ﬁ

Spring

2.0.6

Copyright © 2004-2007 Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu,
Rob Harrop, Thomas Risberg, Darren Davison, Dmitriy Kopylenko, Mark Pollack, Thierry
Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin Leau,

Rick Evans

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

1= =0 TSP RPERR Xiv
I I 014 oo 18 ot A oo PR RPPPPI 15
0 T Y= VT T RS 15
1.2, USAQE SCENGITOS .. .uuvvieiieee et e ittt et e e e e e e e ettt e e e e e e e s s e ta b e e e e eeeeeesaaateeeaeeeaaesssaasntsbareeeeeesannnssrnnnes 17
2. What'SNeW iN SPriNg 2.07 ..ottt e ettt e e st e e e e st e e e e s e e e e e nnnne e s 20
P28 W g 1 oo 8 Tox £ o o TP U 20
2.2. Thelnversion of Control (I0C) CONLAINEYiiuuriiiiiiiiie et 20
2.2.1. Easier XML CONfIQUIELioNueeiiiiieeeiiiiiiiiee et e et e e e e e e e e eeeeaee s 20
2.2.2. NEOW DEBN SCOPES ...uvvviiiiiee e i ittt ettt e e e e e e e e e e e s s sttt e e e e e e e e s e nnnbaaeeeeaeeas 20
2.2.3. Extensible XML @UENOTNGoeiiiiiiiieeiiieee et 21

2.3. Aspect Oriented Programming (AOP) ... 21
2.3.1. Easier AOP XML CONFIQUIAIONeveeiiiiiieeiiiiieeeaiiiee ettt e e e nnneee s 21
2.3.2. Support for @ASPECLI BSPECES ...ccoeeee e 21

P N I =3 1T (o | F= N = PSSR 21
2.4.1. Easier configuration of declarative transactionsin XMLcccoocooiiiiiiiieiiiiiciieeeeeen, 22
2.4.2. JPA e e et e e ba e e e ea s 22
2.4.3. ASYNCIIONOUS IMSottt e st e e anneee s 22
244, IDBC ..ot e e e e e e e e e e br e e e e nnnreae s 22

I I SV o B T PSSP 22
25.1. Aformtag library for Spring MV C ..., 22
2.5.2. Sensible defaulting in SPring MV C ... 23
2.5.3. POIIEL fFrAMEWOIKoiiiieiiii et e et e e e e e e e e e eeeeeaaeens 23

2.6. EVENYNING E1SE ... e e a e e e e nraans 23
2.6.1. DynamicC |anguage SUPPOITcoourrreeriirreeeaaiieeeesasteeee s st e e e s e e e s s e e e s annneeeeannnneeens 23
2.6.2. IMX oot — e e e h e e e e ettt e e e et b e e e e e nre e e e e arteeeeannnreeen 23
2.6.3. TasK SCNEAUIINGeeeiiiiiiieiieie et e e as 23
2.6.4. Java’b (TIgE) SUPPOIT ..cceee e 23

2.7. Migrating to SPriNG 2.0 ..ceieeeiiiiiiieie e et e e e e e e e e e e e s s et r e e e e e e s e r e e e e e e e e aarnraaees 24
2.7. 0. CREINGESeeeeieiitie et et e e e e e e e e e e e s 24

2.8. Updated sample appliCationsccoieiiiiiiiiiiiiie e e e e e e 25
2.9. IMProved dOCUMENTBLIONueiieiiiiiie ettt e et e e s e e e s s e e e s annr e e e s annneee s 25
I o (=T <o o1 0] Fo o 1= PP EURR PP 27
G T N o= o @ oo g =T 1= S PURSRR 28
10 50 1 11 o LB (o1 o o SR 28

3.2. Basics- containers and DBANScooiiiiiiiiiiiii 28

0 220 T I 0= oo | =1 = PSR 28

3.2.2. Instantiating @ CONTAINEYooiiiiiieiiie e e e e e e e e e s s sb e e e e e e e e e eaaaes 30

e T I 0= o = 1 PSR 31

3.2.4. USINGThE CONAINETcoeiiiiiiiiiiieeeeee e 35

3.3, DEPENUENCIES ...eeeieee ettt et e e et e e e e st e e e et e e et n e e s 36
3.3.1L. INjecting dePENENCIEScccvvviiiiiiiiii e 36

3.3.2. Constructor Argument RESOIULIONccoeviiriiiiieee e e i e e e e e e e 40

3.3.3. Bean properties and constructor argumentsdetailedcccccveeeiiiiiciiiiiiee e 42

I B U 1= g To o T=Y Y=Y T F o o U PPRPRN 50

3.3.5. Lazily-instantialed DEANSoooiiiiiieiiiiiie e 51

3.3.6. AULtOWITING COIADOTELONSceeveveeieiiiieeee e 51

3.3.7. Checking fOr dependenCiescoouiiiiiiiiiee e 53

3.3.8. Method INJECTION ...t e e e e e e e s e ee e e e e e e e ennnes 54

I T I o] o - PP 57
3.4.1. The SINGIEION SCOPEeeeeeeiiiie ettt e e as 57

3.4.2. ThE PrOtOLYPE SCOPE ...uvvvreiiieeeeiiiitttee e e e e e e e e s ettt e e e e e e e e s s aatbbaeeeaaeessssnsnbrseeeaaeeesannns 58

3.4.3. Singleton beans with prototype-bean dependencies ... iiiiiece i 59

Spring Framework (2.0.6)

The Spring Framework - Reference Documentation

344, THE OtNEN SCOPESeiiiiiiiiee ettt e et e s as 60
I T O L (0] I o0 o === SR 64
3.5. Customizing the Nature Of ahEANooii i 65
3.5.1. LifecyCleinterfaCes ..., 65
3.5.2. KNOWING WHO YOU @I€ceiiiiiiiieeiittiee sttt e e s 69
3.6. Bean definition iNNErtanCec.euveiiiiie e 71
3.7. Container EXtENSION POINESccccuviieiereeee e i s eiiirre e e ee e e s s et rreeeeesssstrraeeraaeeessansnrrrereeaeens 72
3.7.1. Customizing beans uSING BeanPost Pr 0CESSOI'S ..uuiviiiirrreeriiriieeaiireieessiineeessineeeens 72
3.7.2. Customizing configuration metadata with BeanFact or yPost Processors 75
3.7.3. Customizing instantiation [0giC USING Fact 0 YBEANSccevrvvrreeriireieeeiiieeeesnineens 78
3.8. The ApPl i CAt i ONCONE @XE eeevriiieieeeeeieeeitiee e e e e e e e e ettt e e e e e e e eeeae b e e e e eeeeeeasbaaaeeeeeeeeeessanans 78
3.8.1. Internationalization USING MESSAgESOUN CES weeiruurrrreriurreeeeritireeesasreeeessteeeesssnnseeess 79
RS A = 0| SRS 81
3.8.3. Convenient access to |OW-1EVEl FESOUICESc.ueeeeiiiveiieiiiiiie e 83
3.8.4. Convenient Appl i cati onCont ext instantiation for web applications 83
3.9. Gluecodeandthe evil SINGIELONcoiiiiiiiiiiiiiei e 84
3.9.1. Using the Singleton-helper Classescueviiiiiiiie i 84
A, RESOUICES ...oeeiiiiiiiieit ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt et ettt et e et e e e et ettt e e e e e e et e e e e e e e e e eaaaaaaaaaaas 86
0 W 1 Lo [FTox 1 o] o [N OO PP PR 86
4.2. TheResource INEITACEovvveii it 86
4.3. Built-in Resour ce IMPIEMENLALIONScccoiiiiiiiiiiiiee e 87
. 3.1, U I RESOUI CB tevtueeiiitieeeitteeeeett e eeeett e e e eett e e e e asta e eee st aesastnsaeeesansaeessanasessanaeeesnan 87
4.3.2. Cl ASSPAt NRESOUI CE tuuuiiiiriiieeiiiiieeeetteee ettt eeeeetteeeeast e e eatan e eeesanaeeessanaeeessnnaeeeenan 87
4.3.3. Fi | @SYSt EMRESOUI CE iieeiieiriiiiiieeeeeeeeetttiiaeeeeeeeeeattt e eeeeeeeetrtaaseeeaeeeestnnnaeaes 88
4.3.4. Servl et CONt @XE RESOUI C& .uiieiiruuieeeirtieeeetteeeeetteeeeestaeeeestnseseestnaeeessnnaeeesnnnaeeesnns 88
4.3.5. | NPUL SET EAMRESOUI CE irvvvurieierteieeiettiieerettteetertteesesttesresttesressneersssseerersseereses 88
T = Y] A=Y VO = NV =YY LU o = N 88
A4, TRERESOUIN CELOAUERT .oeiviiiiiiiiiiiieieieeeeeeeeeeee ettt ettt ettt e aeaeaaees 88
45. TheResourcelLoader AWar e INLEITACEvvuiiiiiiiiiece e 89
4.6. Resources aSUEPENAENCIESccccuviiiiiiee e et e e e e e et e e e e e e e s et e e e e e e e s s seanbrreeeeaaeas 20
4.7. Application contexts and Resour ce PatNScoocuiiiiiiiiiiiiii e 20
4.7.1. Constructing application CONEXLSccvvviiiiiiiiiiiiiiiceee e 90
4.7.2. Wildcards in application context constructor resource pathscccccceveeeeeeeinns 91
4.7.3. Fil eSyst eMReSOUr €& CAVERLS ...ciiiieieieeeiiiiieieeeeeeeeettte s e e e e e e e e eaetas e e e e e e e eeeannn e eeas 93
5. Validation, Data-binding, the BeanW apper, and Propert yEdi t 0r Scceeeeevviiviveeeeeeeeeiiinnnnnn. 95
o300 R g 1 oo U Tox £ o o SR 95
5.2. Validation using Spring'sVal i dat or interfacecccccee e, 95
5.3. Res0lViNg COOES t0 EITOr MESSAPESeeeeiiuirieeeiirreeeeaiteeeessbteeesaasbr e e e s asbeeeesabeeeeeannnneeens 97
5.4. Bean manipulation and the BeanW apperc...ueeeeeeeeiiiiiiiiiieeee e eeieieeee e e e e e eeneeeeeeee e 97
5.4.1. Setting and getting basic and nested propertiescccccvvveeeiiiciciieeeeee e, 97
5.4.2. Built-in PropertyEditor implementationsccooiieeeeiiiiiiee e 99
6. Aspect Oriented Programming With SPringcoooiiiiiiieiiic e 103
200 I g 1 oo U Tox £ o SRS 103
L 0 N @] oo [0) 103
6.1.2. Spring AOP capabilities and goalSccueeveiiiiiiiiiiiiiee e 105
B.1.3. AOP PIOXIES .oeiueviieeeiiiiee e et e ettt e e e ettt e e e sttee e e e st e e e e nsaae e e e ansteeeeesnseeeeeannsnenens 106
A (0N o= v N = T o] o o A PSSR 106
6.2.1. Enabling @A SPECET SUPPONTeeeeiitiieeeiiiiee e ettt 106
6.2.2. DECIariNg aN @SPECEceviie e it e et a e 107
6.2.3. DEClaring @POINTCULcceiiuieieeiiieiee ettt e et e e e ees 107
6.2.4. DeClaring @lVICEccooe e, 112
B.2.5. INFOAUCLIONSeeiiieiiii e e e e e s et e e e e e e e s e nnneenees 117

Spring Framework (2.0.6)

The Spring Framework - Reference Documentation

6.2.6. Aspect iNnsStantiation MOGEIScueiiiiiiiiiee e 118
B.2.7. EXAMPIE oo e 119

6.3. Schema-based AOP SUPPOITciiiiiiiiee ettt e st e e e nnnr e s 120
6.3.1. Declaring @an @SPECLccooeeeii i 121
6.3.2. DEClaring @POINTCULcceiiuiiieeiiiiiee ettt e e nnnee s 121
LSRG RC I B = ol = 1o =0 1Y/ o= PR 122
6.3.4. INIFOAUCTIONSvveieeiiiiiie ettt ettt et e e e st e e e e s nbneeeas 126
6.3.5. Aspect instantiation MOGEIScueiiiiiiiiiie e 127
RS X T Ao |V o TP PR PR 127
6.3.7. EXAMPIE ... 128

6.4. Choosing which AOP declaration styletoUSeccoooeveiiiii e, 129
6.4.1. Spring AOP OF TUIl ASPECEI?ooiiiiiiie et 129
6.4.2. @AspectJor XML for SPring AOP? ... 130

6.5, MiXiNG BSPECE LYPES ...vvvieiiieee i i ittt e e e e e s e e e e e e e e s e e e e e e e s s st b re e e e e e e e e s e aanrarereaaeeas 130
6.6. ProxXying MECNANISITISceiiiiiiiieiiiiii ettt e e e e e e e e s r e e s nnneeee s 131
6.6.1. Understanding AOP PrOXIESuvueiieeeeiiiiiiiieieeeee e e e eeiitrar e e e e e e e e ssnrrreeeeaae e e e e ennrenes 131

6.7. Programmatic creation of @ASPECII PrOXIESceveiiiiiiiieiiiiiee e 133
6.8. Using AspectIwith Spring appliCations ... 134
6.8.1. Using AspectJ to dependency inject domain objects with Springcccvveeee. 134
6.8.2. Other Spring aspectSfOr ASPECEIcooiiiiiiiieiiiiiee et 136
6.8.3. Configuring AspectJ aspectsusing Spring loCcccoevieeeei i, 137
6.8.4. Using AspectJ Load-time weaving (LTW) with Spring applications 138

6.9. FUMNEr RESOUICESooiiiiiieeiiiiiee ettt et e e e et e e e et e e e s sntneeeeannneeeeas 139
7. SPIINGAOP APLS ..ottt e et e e et e e e e e e e e nb e e e s anbb e e e ennnree s 140
8¢ TR g 11 oo o £ o o SR 140
7.2, POINECUL APL TN SPIING ceeeiiieeiii et e e e e s e s e e e e e e s et eaeeaeeas 140
A T 0] 4 ¢ o (= PP PP 140
7.2.2. Operations 0N POINECULSccvvirieiieeeeseicitiie e e e e e e s e st e e e e e e e e s sentbrae e e e e e e e e e snnnrnnees 141
7.2.3. ASPECtI eXPression POINTCULScuvvreeeiirreeesaiieieessteeeessssre e e e e e s b e e e snnnreees 141
7.2.4. Convenience pointcut implementationscccceevviiiiiiieeiee e, 141
7.2.5. POINTCUL SUPEICIASSESeeiiiiiiiieeiiitie ettt ee ettt e st e e e s 143
7.2.6. CUSEOM POINICULScoeeeeee e 143

7.3, AQVICE APL IN SPIING weveeiieeeeiiicieee e e e e e s e st e e e e e e e s ennr e e e eeaeeas 143
7.3. 1. AQVICE IITECYCIES .o 143
7.3.2. AQVICELYPESIN SPIING .ooeeiiiiiiiee et e e e e e e e e e e ennreaes 144

7.4, AQVISOr APLIN SPING .ot e et e e nnnnee s 149
7.5. Using the ProxyFactoryBean to create AOP ProXi€Scoooeveveieiiiiii e, 149
T5.L. BASICS oo, 149
7.5.2. JaVaBEaN PIrOPEITIES ...oeiiieeeiiiiiiieii et ettt e e e e e e s e e e e e s e st ae e e e e e e e e e e ennneeeeas 150
7.5.3. JIDK- and CGLIB-based ProXi€Sccoiiicuiiiiiiiiee ettt 151
7.5.4. ProxXying iNTEITACESoveiiiiiiiie ettt 152
7.5.5. PrOXYING ClaSSESuvviiiiiii i a e e e 153
7.5.6. USING 'GIODAl" @OVISOISeeiiiiiiieeiiiiiie ettt 154

7.6. Concise proxXy defiNitioNScoooviiiiii i 154
7.7. Creating AOP proxies programmatically with the ProxyFactoryccccccevviiveeeiiinnnnn. 155
7.8. Manipulating adviSed ODJECESueiiiiieeeii et e e e a e 156
7.9. Using the "autoproxy" faCilityeeeiieiiiiiiiie e 157
7.9.1. Autoproxy bean defiNitioNSc.eeeiiiiiriieiiiii e 157
7.9.2. Using metadata-driven auto-proXyingccccceeeeeeeeiiiiiiiieeeeeeeesseiiineeeeeeeeeesssnennens 159
7.10. USING TAIEISOUITESceeiiiiiiieeeaiteeee ettt e e ettt e e s ettt e e sttt e e e sbs e e e e et e e s anbb e e e e s nnnneeeas 161
7.10.1. Hot swappable target SOUICESccooeeieie i 161
7.10.2. POOIING tArgEt SOUICESccuvviieeiiieiee e ittt ee e ettt e ettt e et e e e s nnnsee s 162

Spring Framework (2.0.6) iv

The Spring Framework - Reference Documentation

7.10.3. Prototype target SOUICESeeeeereeriiiiiiriieieeeeeessssinrree e e e e e s s s snnrrneee e e e e s s snnrenes 163
7.10.4. ThreadLocal Target SOUICEScoiiiieeieeeiiiieseeeeeeeeettis s e e e eeseeetsran s e e e e e eeeesnraaeeeas 163

7.11. DefiNiNg NEW AdVi C& TYPESveeiiiiiiiieeiiitiee e ettt e ettt e et e et e e e st e e e e nnnneee s 164
7.12. FUIMNEI TESOUICESeiiiiiieeei ittt e e e e e e ettt e e e e e e ettt e e e e e e e e s nntebe e e e e e e e e e e annnreeeeeaaeess 164
S 1= 11 o [PPSO PRSPPI 165
S 300 I g 1 oo o £ o o SR 165
oA U g 1 (= 1 o SRS 165
8.3, INLEQIatiON TESHING ...eeeeiieieieeiiiti ettt e e e e e e e e e e e e s anbn e e e e s annneee s 165
8.3.1. Context management and Cachingccccveeiiie i 166
8.3.2. Dependency INjection Of teSt FIXTUIEScooiiiiiiieiiiiee e 166
8.3.3. TransaCtion MaNagEMENTcooeiiiii i 168
8.3.4. ConvenienCe VariablESccuuviiiiie e 168
8.3.5. Javab+ SPECITiC SUPPOIT ..ot a e e e 169
8.3.6. PEtCliNIC EXAMPIE .. .veieiiie et e e 170

8.4. FUIMNEN RESDUICESviiiiiiieeeii ittt e e e e s e ettt e e e e e e e s st e e e e e e e e s s ntereeeeaaeesaaannneanneeaeeens 171
[1. MiddIE TIEr DAIAACCESScuveeeeeeeiitieeeesitteee e sttt eeeaasteeeeasstaeeeeaaseseeeeasbeaeeaasseeeeeaasneeeesannseeeesnnseeesaanns 172
9. TranSaCtion MANAGEMENTc.uuiieiiiiiie et e e e e et e e e st e e e e s sbe e e e e anbe e e e s abbeeeeannnneees 173
LS 00 R g 1 oo o £ o o SR 173
0.2, MOUIVALIONSeeeeeiiteee ettt et e e ettt e e e eab b e e e e st bt e e e et et e e s anbb e e e e annnreee s 173
0.3, K@Y SIIACLIONSeeiiiiiiiii ettt 175
9.4. Resource synchronization With tranSactionscoocciiiieiiee e 177
9.4.1. High-level @pproaChoccuiiiiiiiiiee e 177
9.4.2. Low-level approaCh ..o 178
9.4.3. Transacti ONAWATr €Dat ASOU CEPI OXY eivvvruuuieieeereieettiiiieeeeeeeeestnnneeeeeeereernnns 178

9.5. Declarative transaction Mmanagement ..o 178
9.5.1. Understanding the Spring Framework's declarative transaction implementation 180
0.5.2. A FIrSt EXAMPIE ...t 181
9.5.3. ROIINGDECK ... e 184
9.5.4. Configuring different transactional semanticsfor different beans 184
9.5.5. <tx:advicel > SEHINGS ..iiiiiiiiiiiiee e 186
9.5.6. USING @TT @NSACET ONAI 1eveeeiiieiiiieiireeeseeititeieeeee e e s s stnraaeeeeeeessssnsrrnreeaaeessasnnrenees 187
9.5.7. Advising transactional OPErationsccccceee e, 191
9.5.8. Using @ ansacti onal With ASPECLTovviiiiiieiiiicee e 193

9.6. ProgrammaticC transaction ManagemMENTcooourreeiiiireeeeiirree e e e 194
9.6.1. USINgthe Transact i ONTEMPl @L @ .eveeeeeiiieiuriiriieeeeeesiiiiireereeeeessssnrrrereeeeeeseesnnennens 194
9.6.2. Using the Pl at f or nTr anSact i ONMANAGET ...eeeiivrrieeriiireieeiiiieeeeseieeeeessieeeeesnaieeeens 196

9.7. Choosing between programmatic and declarative transaction management 197
9.8. Application server-specCifiC iNEGratioNc.ouiureeeiiiiiie e 197
0.8.1. BEA WEDLOGIC ...vvveeeiiiiieeeiiiieeeesiitee e e siteee e s sntiee e e e sntaeeessnssaeeesennseeeeesnseeeeeannsneeens 197
0.8.2. IBM WEDSPNEIE ...ttt 197

9.9. Solutionsto COMMON PrODIEIMS ... 197
9.9.1. Use of the wrong transaction manager for a specific Dat aSourceceeeeeeeviruvnnnnen. 197

9.10. FUIMNEr RESOUITESuvieiiieeei i ittt e e e e e s s ettt et e e e e e se st e e e e e e e s s sssnteaeeeeaaaeesasnsnteneneeaeens 198
T D 7N @ 1= o o o | P 199
0 50 T 11T U Tox 1 oo T PPPRR 199
10.2. Consistent exception NIEIrarChycccuueiiiiie e e e 199
10.3. Consistent abstract classes for DAO SUPPOIooceiiiieiieeee et e e e 200
11. DataaccesSUSING JDBCooiiiiiiiiieiiiii et e e e e 201
00 O 1 o [0 o o PO PPPRSTPRRR 201
11.1.1. The package hierarChy ... 201

11.2. Using the JDBC Core classes to control basic JDBC processing and error handling 202
0t T 1 [7o =111 o = A=Y USRI 202

Spring Framework (2.0.6) Y

The Spring Framework - Reference Documentation

11.2.2. NamedPar amet €r JADCTEMPl At € .vvvuuieieeerereiiiiiieeeeeeeeeartnaseeeeeeerensrnnaaeeeeseeerssnnnns 204
g S I o TN Lo [Tl =T 1 oL L= 206
T1.2.4. DAL ASOUI CE .ureeeeruieeietieeeeeet e e e e ettt eeeeataeeeeat e e e e et e ees et aeesetanaeesetanaeeseranaeeeerannns 207
11.2.5. SQLEXCEPLi ONTEANSI AL OF ivvvniieriieinieitieeitieereieeea e e ea e e ra e st e raaeesa e s et eraneranns 208
11.2.6. EXECULING SIAEEIMENLSoieveiieiiiiiie et siie ettt e e e e s e e st eeeeaaes 209
12.2.7. RUNNING QUENTES ...coiieeeiiiieiie e ettt ettt e e e e e e e et e e e e e e e e e anneneeeeeaeens 209
11.2.8. Updating the databasecoeeeeiiiiiiiiiiiice et 210
11.3. Controlling database CONNECIONSuverieiiiiiie et 211
N T T =Y =T o T oy =Y U I 211
11.3.2. SIBI T DAL @SOUM CE eevvruneeeierieeeeetieeeeeetaeeeeetaeeesetaeeesetaaeesetaaeesetaaeeseraaeeserannns 211
11.3.3. ADSt T ACE DAL BSOUI C8 wruuieeierunieeiitieeeeeteeeeeetaeeeeetaaeaesetaaeeeetnaeeretaaeaeetanaeesesnnnns 211
11.3.4. Singl eConNECt i ONDAL ASOUT CE wvvvurueeeeerererriuieeeeeererersrnnseeeeeseeessrnaaaeeeseeesssnnnn 211
11.3.5. Driver MaNager DAt @SOUN CE .u.ieeeerueeeieriieeeeetieeeeeetaeeesetnaeeeetnaeeestneeeeeraeeasesnnnns 212
11.3.6. Transacti oNAWAT €Dat @SOUI CEPI OXY ievuiiiruiiirreiriiereteeeteeeriieesteersneeetaeesseeesans 212
11.3.7. Dat aSour CeTr anSact i ONNMANAGET ..iveeeeeerrrurunieeeeeeerernennaaeeeeeserensrnnaaaeeeseressnnnnns 212
11.4. Modeling JDBC operations as Java ObJECESccuvvieiiiiiiiiiiiiee e 213
N T o @ =Y Y S 213
Y Y o T Te 1o I VLT 213
T1.4.3. SOIUDAAL € wruuieiieruieeietiiieeieie e e e e et e e e e et e e e e et e e e s et e e e se b e e s sabb e e e seba e esebaeeeseraanss 214
L11.4.4. StOr @dPrOCEAUI € .eeierieeeiiie e e e et e e e et e e ettt e e e et te e e e e et e e e eeta e e e e et e e esetanaeaeesannns 215
T1.45. SOIFUNCET ON ceuriiiieiii et e et e e e e e et e e ea e e et e e s e e aa e e et e eeaneeeanns 217

12. Object Relational Mapping (ORM) data 8CCESSccoiurrieeiiiiiiiee it 218
2250 TR g (oo [0 Tox 1 o o RO PPPPN 218
N o 1= (= 219
12.2.1. ReSOUICE MaNaQEMENTccoieiiiiieis e e e eeeeeeiiie s e e e e e e e e e s e s e e e e e e eeeraaaaeeeeeeeennennnnn 219
12.2.2. SessionFactory SEtUP iN @SPring CONLAINETeeeveeeeiiiiiiiiiereeeeesssiiiireeeeeeens 220
12.2.3. ThEHi bernat @TENPI L@ evveeieieiiiieiieieie e e e e e s s s e e e s e e e e s 220
12.2.4. Implementing Spring-based DAOs without callbackscccccceeeiiiiiiiinnnnn. 222
12.2.5. Implementing DAOs based on plain Hibernate3 APcoooiiiiiiiiiiieiiiiieees 222
12.2.6. Programmatic transaction demarCationccccceeeeeeeeiiiiiiiieeeeee e 223
12.2.7. Declarative transaction demarCationcooeeeeeieiiieiiiiiiie e, 224
12.2.8. Transaction management Strat@QiESccveveeeeeeiii e 225
12.2.9. Container resources Versus |0Cal rESOUICESccvveeeeeeeeiiiiiiiiieeeee e e s sseiivvereeaeens 227
12.2.10. Spurious application server warnings when using Hibernatec.cccceeens 228
22 TN | T U PPPRPR 229
12.3.1. PersistenceManager Fact or Y SEUD .oooooeiiiiiiiiiiie e 229
12.3.2. JdoTenpl at e AN JAODAOSUPPOI { .uieverunieeierieeererieeereraseeserseessesaeeeseraseesesaanss 230
12.3.3. Implementing DAOs based on the plain IDO APoccvviiiiiiiiieie e 231
12.3.4. Transaction MaNaQEMENTcccoeiiiiieiiie e es e 232
12.3.5. JAODI Al CE uiieieiiiiiiiiiiie e e e e e ettt e e e e e e et e e e e e e e e e et r e e e e e e e e ar e aaeeeaaraaaa 233
12,4, OraCle TOPLINK ...oeiiiiiiieiiiiie ettt e e e e e e e e e anneeeeaae 234
12.4.1. SessionFact ory ADSITACHIONuvueiiiiiiiiiiiiiiee e e e e e e eeeaaaaas 234
12.4.2. TopLi nkTenpl at € @Nd TOPLi NKDAOSUPPOI t ceeeeeeieiiieeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeens 235
12.4.3. Implementing DAOs based on plain TopLink APlccoooiiiiiiiiiii, 236
12.4.4. TransaCtion MANAgEMENTccoiuriiieiiiiie et e et e st e e e e s s e e e s sbeeeeeaaes 237
12.5. IBATIS SQL MEPS .. .vveiiiiiiiiie et e e ettt e e e sttt e e e st e e e sstaee e e sntaeeeeannsseeeeanseeeeeansneneeanns 238
12.5.1. Setting Up the Sql MBPO i €N .evvveeeiicciiiiieeee e ee e 238
12.5.2. Using sql Mapd i ent Tenpl at e and Sql MapCl i ent DAOSUPPOTrt .eeevvveeereiceevneeeenannn. 239
12.5.3. Implementing DAOs based on plain iIBATISAPI ..., 240
F2.8. JPA oo e e e e e e — e e e e e e e ae b ————eeaaeeaaaabrrraeaaaaeaeaant 241
12.6.1. JPA setup in a Spring enNVIFONMENLcccoeeieiiiiiiiiieee e 241
12.6.2. JpaTenpl at e ANA JPADAOSUPPOT T ceeeeeeeeieieeeeeieeeeeeeieeeeeeeeeeeee e e e e ae e e s e ee e e e e e e e e aeaeaaans 245

Spring Framework (2.0.6) Vi

The Spring Framework - Reference Documentation

12.6.3. Implementing DAOsbased on plain JPAooiiiiiiieeee e 246
12.6.4. EXCeption Trangationceiieiiiiiiiiiiiieee e e e e 248
12.7. TransaCtion MaNagEMENTcccoiuuiiieiiieiee et e e e et e e e e sbeeeeeanes 248
2R S T 1 =1 0 T L =Y S 249
T B 0T YAT L o TP PPPPPPPPPPPPPPRt 250
13. Web MV C frameEWOIK ...ttt e e e e e e e et e e e e e e e e neneneeas 251
30 O 1 oo [0 ot T o PP PPPPPTPPRR 251
13.1.1. Pluggability of other MV C implementationscoucuereeeiniieeenniiieee e 252
13.1.2. Featuresof Spring Web MV C ... 252

G T2 N o ol o Y T o] (Lo oY Y =] 253
GG T 1 1o = £SO RRERR 257
13.3.1. Abstract Control | er and WebCont ent GENET @t OFccevvvvueeieeeriieerriiieeeeeeeeeeeeraanns 258
13.3.2. Other SIMple CONLIOIIENSooiiiieeiii e 259
13.3.3. ThEMII ti ACti ONCONT T Ol 1 81 ciiiieeieeeeeieeeee et e 259
13.3.4. Command CONLTOIIENSeeeiiiiiie et e e 261
13.4. Handler MapPIiNgS ...cooeeeiiiiiiiiiiiee et e e s st e e e e e e s e et b be e e e e e e e s s enantbaeeeeaaeeeannnes 262
13.4.1. BeanNanmeUr | Handl €r MAPPI NQ wevvvruniieeeeeeeeeiiiiaseeeeeseesssinnsseeeessesnssnnaeeeesesssssnnnns 263
13.4.2. Si npl eUr I HANAL €F MAPPI MO +unneriiiieeeeiiieeee et e e e et e e e e et e e e eet e e e setaeeeeetaaeeeesannns 264
13.4.3. Intercepting requests - the Handl er I nt er cept or interfaceccccceeevvvciiiennnenn. 265
13.5. Viewsand resolViNg theMcooiiiiiiiie e 266
13.5.1. Resolving views - the Vi ewResol ver interfacecccccccvvvvciiieiiie e, 266
13.5.2. Chaining VIEWRESOIVEN'Scoccuiiiiiiiiiiieeiiiee ettt 267
13.5.3. ReAIr€CtiNg IO VIBWS ...ttt e e e e e e 268
13.6. USING IOCEIESoeiieiiiiiie ettt e e e et e e e nbre e e e e 269
13.6.1. Accept Header LoCal ERESOI VEI ...uuiiiiiiiiiiieiiiieeee e ee e e e et e et e e e e eeeeaaaans 270
13.6.2. CoOki ELOCAI BRESOI VEI iiieiiiiiiiiiiii e e e e ettt e e e e e e e e e et e e e e e e e e e eaa e e e e e e e e eeeaanans 270
13.6.3. Sessi 0NLOCAl ERESOI VEI oivvuniieiiii i e et ee et e e e e et e e et e e e et e e e e et e e e e eaaaans 270
13.6.4. Local €Changel Nt EF CEPL OF wuuuiiruiiereeiteeitieeeieeeee e e et e e et e et e e st e erneset e raneeerans 271
13.7. USING TNEIMES ...ttt e e e e e e et e e e e snne e e e e 271
R T T 1 oo [T ' o SR PRROPPRR 271
13.7.2. DEfININGTNEIMES ... e e 271
13.7.3. TREMETESOIVEN'S ...ooiieiiiiiee ettt e e e e e e e et e e e e e e e e anneneeeeaaeens 272
13.8. Spring's multipart (fileupload) SUPPOIToevireeiii e 272
G2 3¢ R 1 110 o [o1 oo PP 272
13.8.2. USINGthe Mul ti PArt RESOI VET iecciiiiciiiiiieieee e e e eitiiee e e e e e s e eesitrtaee e e e e e e s s sanrarneeeae s 273
13.8.3. Handling afile upload in @fOrmccooiiiiiiiiiiiie e 273

13.9. Using Spring'sformtag lioraryccoooeeeeee e 276
13.9.1. CONFIQUIBLION ...eeieiiiiiieeiiiiie ettt ettt e et e e e e e e s esb e e e s nnbneeeeane 276
13.9.2. ThEFOr MEBY cuvveeeeeiiiiee et e e e e e s e e e e st e e e e nae e e e e ennreneeesnneeeeeanns 276
e I T I Lo I TT L - o PP 278
13.9.4. The CheCKDOX T80 «.o.uvveieeiiiiiee ettt e e e e e e e aaes 278
13.9.5. Theradi 0bUt tON LA ...ccccvviiiiiiee e e e e e e e s st reeaeeas 279
13.9.6. The PasSSWOr d T80 «....vvveeeiiiiiie ettt e e e e e eeeane 280
13.9.7. ThESEl €Ct LA toiieieiee e i e 280
13.9.8. THEOPL i ON B .eeieiitiiieeiiiiie ettt e e sba e e e anes 280
13.9.9. TNEOPLT ONS 1Y weeerieeeeiiiiiieiie e ettt e ettt e e e e e e et ee e e e e e e e e anneneeeeaaeens 281
13.9.10. Thetext ar@a tagccccccciviiieeie e e e e e e e e e e s sanrarereea e 281
13.9.11. THE NI dden TAQ ..oouveeeeeiiiiee ettt e e e s e e e e e e aaes 282
13.9.12. ThEErrors tAg wuveiiieiiiiicieiee e e e e et r e e e e e s s san e e e e ae s 282
13.10. HaNdliNG EXCEPLIONScoiuuvreieiiiieieeaiteie e st e e et e et e e s s e e e et e e e e et e e e s snbnneeeanns 284
13.11. Convention oVer CONFIGUIALTIONccccceieeieeeieceeeee e 284
13.11.1. The Controller - Cont rol | er O assNameHandl er Mappi NG «.ocooeeeeeeieeeeeieeeeeeeeeeenn. 284

Spring Framework (2.0.6) Vii

The Spring Framework - Reference Documentation

13.11.2. The Model - Model Map (Model ANAVi BW) .cuevveeeiiiiiieeeiiieeesaiiiee e s e e sineee e 285
13.11.3. TheView - Request ToVi eWNANBTF ANS| @t OF ...cveeeveieveriieeieeeeeieeerieeeeeeseeeeesanans 286
13.12. FUINEr RESOUICESoeeeiiiiiitiiieee e e e e e eet ettt e e e e e e sttt e e e e e e e s st aeeeaeeessssntaaneenaeeenannnes 287
14. Integrating View tEChNOIOGIEScccooiiii i 289
72 50 T 11T U o 1 oo U EPPRR 289
L4.2. ISP & JSTL oottt ettt e e e et e e e sttt e e et e e e ettt e e e e nnaeeeeanreeaeenrneaeeanns 289
T4.2. 1. VIBW FESOIVEIS ...eeeiiiiiie ettt s ettt e ettt e e s et e e e s snnbe e e e s nnbneeeeane 289
14.2.2. 'Plain-0ld JSPSVErSUS JSTL ..cocveiiiiiiiiiiiieee e ettt e e e e e e e e e e s s seneaeeeeeae s 289
14.2.3. Additional tags facilitating developmentcccveveeeeeriiiiiee e, 290
I T I =SSO PPSP PSPPSR 290
G T T D 1= o =T o 290
14.3.2. HOW tO INtEIrate THES ..ooiueeieieieiieie ettt 290
14.4. VeloCity & FreeMarker e 291
I T B = o 0o (= g o= 291
14.4.2. CoNteXt CONFIQUIBLIONueeiieiiiiie ettt e e e e e e e anes 292
14.4.3. Creating tEMPIELES ..ot e e e e e e e s s e e e e 292
14.4.4. Advanced CONFIQUIBLIONoccuuriieiiiieie it e e e 293
14.4.5. Bind support and form handlingcccooeeeeiie i, 293
T S IR PP PPPPPOPPRP 300
1451, MY FITSEWOITS ..ottt e e 300
Y S 11 47 Y PR 302
14.6. Document VIEWS (PDF/EXCE])uuviiiiiiiieeieie ettt 302
I G0 I Voo [0 o o SRR PRSP 302
14.6.2. Configuration aNd SEIUDcccoiiurrreeiiiiiie et et e et e e e e s e e s snbneeeeanes 303

N 7= 0T = 00 = 305
A T D= o 0o (= g o= PP 305
14.7.2. CONFIQUIBLION ...eeiiiiiiieeeiiieee ettt e e s e e e e e e e s e e e e e 305
14.7.3. Populating the Model ANAVi @Wocccuuiiiiiiee e e e cciiieeee e e e e e e e e e e e e s saarareeeea e 307
14.7.4. Working With SUD-REPOITSoviiiiiiiieice e 308
14.7.5. Configuring EXporter Parameterscoeeeeeiiiiiiiieiieee e 309

15. Integrating with other web frameworksoooiiiiiii e 310
S50 R g 11T [Tox 1 oo O RRERR 310
15.2. CommoN CONFIGQUIBLIONuvviiiiieeesiiciiiiee e e e e s et e e e e e e et e e e e e e e e s eantr e e eeaaeeeannnes 310
15.3. JAVASEIVEN FBEES ...ooiiviieeeiiiiee e e ettt e e ettt e e e ettt e e e st e e e asaae e e e ansaeeeeansaneeeeasteeeeennsaeeeeanns 312
15.3.1. DelegatingVariabl€RESOIVENccuuiiiiiiieii e 312
15.3.2. FaCeSCONtEXIULIISeee ettt e e e e e e e 312
D54, SITULS oeiiiteeiee ettt ettt e ettt e e e ettt e e e na et e e e snsbe e e e e anbee e e e e nan e e e e annteeeeeanrneeeeanns 313
15.4.1. ContextLoaderPlUGINveiiiiiiiie et e e 313
15.4.2. ACtiONSUPPOIT ClBSSESevveiiiiieeeiiieiiiieee e e e e ettt e e e e e e e e eeeee e e e e e e s s enneneeeeeaeens 315
T T 1o 1= 1 Y TR 315
15.5.1. Injecting Spring-managed DEaNSccoiiiiiiiiiiiii 316

15.6. WEDWOTK ..ottt e et e e e sbneeeeann 321
15.7. FUMNEr RESOUICESciiieeiiiiieiiiieee e e e e e ettt e e e e e s s st e e e e e e e s ss et ereeaeessssntsaneenaeeesannnes 322
16. Portlet MV C FrameworK ...ttt e e et e e e e e e neneeeeas 323
350 R 11T [UTox 1 o o PR 323
16.1.1. Controllers- The CINMVC ..o 324
16.1.2. VIewS-TheV INMVC ...ttt 324
16.1.3. WED-SCOPEA DEANSeeieiiiiiee e 324
16.2. THE DI SPAt ChEI POt 1 @1 .uuiiiiiiiiiieeiiee s e e e e e e eee e e e e e s e e e b e e s e e e s seeaa bbb seeesessesbabaaneeeas 324
16.3. TRE Vi @WRENAET €5 SEI VI B ceeiiiiieeiiiiee e e e ee e ettt e e e e e e e et et e e e e e e e e e e aa b e e e e e e e e eesbaraeeeas 326
16.4. CONMIOIIENS ...ttt e e e e e s ettt e e e e e e e e e ennteneeeeaeeeeaannes 327
16.4.1. Abstract Control | er and Port| et Cont nt GENEr At OF ..u.uveveeereeeverureeieeereeeeesnnnns 328

Spring Framework (2.0.6) viii

The Spring Framework - Reference Documentation

16.4.2. Other SIMPIE CONTOIENSeeieiiiiee e 329
16.4.3. Command CONLIOIEISeeieiiiiiiee e naeeeeenes 329
16.4.4. Port!l et W appi NGCONT F Ol | ©F weuvuuuiiiiieeeeieeiiiie e e e e e e e ee et e e e e e e e eeeasraa e e e e e e eeeenennans 330
GRS T o =T o | = =T o T 330
16.5.1. Port! et ModeHandl €r MAPPI NQ ceevvruiieieeeeereiiiieeeeeeeeeeersineseeeeeseeeassnnaaeeeeseessssnnnns 331
16.5.2. Par amet er HANA] €F MAPPI MO .uueriiiieieiiiieeee e e e e e e e e et e e e e et e e e e et e e e eetaaeeeerannns 331
16.5.3. Port| et ModePar anet er Handl €F MBPPI NG eevurervrneerneieteeeieeerieerieeerneeesreerseeenans 332
16.5.4. Adding Handl €r 1 Nt eI CEPL OF'S c.uuvvieeiiiieieeaiiiiee e ettt e e st e e s r e e s e e s e e e e aaes 332
16.5.5. Handl er 1 nt €r CEPt OF AAPL EF ivvvriiernieiiieiiieeee e e e et e e e e et e e eb e ran e eaans 333
16.5.6. Par anmet er Mappi NI Nt €F CEPL OF .vuuiiiieereeeeiiiiieieeeeeeeeersiiaeeeeeeeeeeasraaaeeeeeeeeesennans 333
16.6. Viewsand resolVING themMcccooiiiiii i 333
16.7. Multipart (file upload) SUPPOITeiiiiiiiiee e 333
16.7.1. Usingthe Portl et Mul ti part RESOl VEI ..eiiiiieiiiiiiiiiiieeeeeeeeeiiiiieeeaa e e s e eeneneeeeeaeens 334
16.7.2. Handling afileupload inaform ..., 334
16.8. HandliNg EXCEPLIONSccoiiiiiieiiiieee ettt e ettt e et e e e e e et e e e e nnnneeeeanes 337
16.9. Portlet application deplOyMENT ...ttt e e e 337
VR 1 411= | = (o OO PP PU PR PPPPPP 339
17. Remoting and Web SErviCeS USING SPIING ..ceeeeiie e 340
0 O 1 oo [0 ot T o PP PP PPPPPPPPRR 340
17.2. EXpOSINg SErVICES USING RMI .o 341
17.2.1. Exporting the service using the Rmi Ser vi CEEXPOrt €rcoccvvvvieeieeeesiiiivineneeeenn. 341
17.2.2. Linkingintheserviceat the Client ... 342
17.3. Using Hessian or Burlap to remotely call servicesViaHTTPcccveviieeiiiiiiiiiiieceeeeeeees 342
17.3.1. Wiring up the Di spat cher Servl et fOr HESSIANccoviiiieiiiiiiiieeiiiee e 342
17.3.2. Exposing your beans by using the Hessi anSer vi ceExportercccoceeevieieieiennnnn. 343
17.3.3. Linkingintheserviceonthe clientccccccoo i, 343
17.3.4. USING BUIT@AD ...ooviiiiieiieee et e e 343
17.3.5. Applying HTTP basic authentication to a service exposed through Hessian or
BUITED e 343
17.4. Exposing servicesUSING HT TP INVOKEN'Scoooiiiiiiiiiieiec ettt 344
17.4.1. EXPOSING the SErVICE ODJECTvvvieeiiiiiie et 344
17.4.2. Linkingintheserviceat the Clientcccooeeie i, 344
17.5. WED SEIVICES ...ttt e e e 345
17.5.1. Exposing services using JAX-RPCooiiiiiiieiiie e 345
17.5.2. ACCESSING WED SEIVICESuvviiiiieeeiii ittt e e e e e ettt e e e e e e et e e e e e e e s s santareeeeaee s 346
17.5.3. Register Bean MapPINGScccorurriieiiiirieeiiiiieeeaiieeeessteeeessinneeessnneee e snneeeeanes 347
17.5.4. Registering our OWN HanNdIerccoooiiiiiiiii e 347
17.5.5. Exposing Web ServiceS USING XFITeueiiiiiiiiieiiiiiie et 348
L7.6. JMS oottt ettt e e e et e et — e e e e R be e e e e attee e e e naeeeeanteeeeearreeeeans 349
17.6.1. Server-side CONfIQUIELIONccoeeeiiiiiiiiieiee et e e e e e 350
17.6.2. Client-Side CONFIQUIALIONcoiuriieeiiieie et e e 350
17.7. Auto-detection is not implemented for remote interfacesccccveeeveeeiiiciiiieecee e 351
17.8. Considerations when chooSing ateChNOIOGYccuueieeiiiiiieeiiiiiie e 351
18. Enterprise JavaBean (EJB) iNteQrationccccooviiiiiiiiiiiii e 353
S 50 R 1 10T [UTox 1 oo U RPPRR 353
18.2. ACCESSING EIBS ...ttt e e e e e e e e e e e e e e e anne 353
S T O 0 o o 353
18.2.2. ACCeSSING 10CEI SLSBSooiiiiiiiiiiiii e 353
18.2.3. ACCESSING FEMOLE SLSBS ...vviiiiieiiii ittt e e e et e e e e e 355
18.3. Using Spring's convenience EJB implementation Classescccccvcveeiieiiiic e, 355
ST 1Y R SUPSRSSTRS 358
S 50 R 11T [UTox 1 o o T SPPRR 358

Spring Framework (2.0.6) iX

The Spring Framework - Reference Documentation

19.2. USING SPIiNG IMS ..ottt ettt e e e e e et e e e e nbre e e e e 359
S 2 TN 13 =Y 1] = =S 359
19.2.2. CONNECLIONSvvviiiiieeeiieeiiieeieeee e e s s sttteeeeaeessasnttaeereeeeessasnssanaeraaaeessansnsnneeeeaeens 359
19.2.3. Destination Managementccooeeeieieiiiiiees e s s 360
19.2.4. Message Listener CONTAINESSuviiiiiiiieeiiiiee ettt e e e e 360
19.2.5. Transaction MaNBgEMENTcoiieeeiiiieiiiiieee e e et ee e e e e e e e aeeeeeereeeeeesanneaeeeeeaeens 361

19.3. SENAING AMESSAGE +vvvrreeeeiiiiiiiiiiiiieeeseeiittieeeeeee e e st esttrereeaeessasstraeaereaaeesssnsntsaeeeeaeeasannes 361
19.3.1. USINg MESSAFE CONVEITENScouuiiiiiiiiieie ettt e ettt e et e s e e s e e e e e e 362
19.3.2. SessionCal | back and Producer Cal | BACK ..cccceveieieieieieiiiieiiiieieieieieeeeeieeeeeee e 363

19.4. RECEIVING @IMESSAGEeeeeiueirteeiauiieeeeauteeee s ettt e e s aabe e e e asbe e e e s abae e e e e sbn e e e s anbreeeeanbneeeeanns 363
19.4.1. SynchronOUS RECEPLIONccceeeiiii i 363
19.4.2. Asynchronous Reception - Message-Driven POJOSccoovuieveiiiiieeeniiieeeennns 364
19.4.3. The Sessi onAwar eMessageLi st ener INtEfacecovvveeeiiiiiiiiiiiiceee e, 364
19.4.4. The MessageLi St eNer AQAPL EF .uuuueeriieeeiiieriiiiiieeeeeeeeererieeseeesseeasra s eeesessessaaans 365
19.4.5. Participating iN tranNSACHIONSvviiiiiiiieeiiiee et 366

1240 TN 1Y R 368

P20 I I 1 1 L1 o 1 o o RSO 368

20.2. Exporting your beanSto JMXcoooiiiiiiii i, 368
20.2.1. Creating N MBEANSEN VET .icuvurrierereeesiiiistiteeeeeeeesssssssssnesesaessssssnsssssesssesssasnsnsnsees 369
20.2.2. Reusing an eXiStiNg MBEANSET VEI ccoiiurrreeiiiiieeessirieeesaaiseeeessnneeeessneeeessannneeens 370
20.2.3. Lazy-initialized MBEANScoeviiiiiiiiiiiiie et 370
20.2.4. Automatic registration Of MBEENSoeeiiiiiiieiiiiiie e 371
20.2.5. Controlling the registration BENAVIOrcceiieiiiiiiiiiiiiieeee e, 371

20.3. Controlling the management interface of your Deansccccvvveeeiiiiiie i, 372
20.3.1. The MBeanl! nf oAssenbl er

1= o PR PUPRPP PRI 372
20.3.2. Using Source-Level Metadalalcoovcurreieiiiiiieeeieee e 372
20.3.3. USINg JDK 5.0 ANNOLBLIONSvveiiieeeiiiiiiiiieeeee e e e esiitene e e e e e e s s ssnrrree e e e e e e e e e sanennes 374
20.3.4. Source-Level Metadafa TYPESvveeiiiirieeiiiiiie et 376
20.3.5. The Aut odet ect Capabl eMBean! nf oAssenbl er

1= o= SRR 377
20.3.6. Defining Management interfaces using Javainterfacescccccceeeeeeeeeeeeeen, 378
20.3.7. Using

Met hodNarmreBasedMBean! Nf OASSEMDI EI iuuuiiiuiiiii i e e e e e e e e e et e e e e e anneeeen 379

20.4. Controlling the Gbj ect NameSTOr YOUr BEANSccooiiiiiiiiiiie e 379
20.4.1. Reading Obj ect NameS frOM PrOperti €S ...uueveiieeeeiiiciiiiereeeeessseeiiieeeneeeessssenennes 379
20.4.2. Using the Met adat aNami NGSE I8t €Y «vvveverereeereieieiiieeererereeeeseeseseessese s s sseeseeeeeeaeeas 380

20.5. JSR-160 CONMNECIOIS ...cceeieieieieee e 381
20.5.1. Server-side CONNECLOISuuueiiiieeei it ee e e e e e e e e e e e e e e st e e e e e e e e e ennneeeeas 381
20.5.2. Client-Side CONNECIONSuvvieeiiiiieeesiieee ettt et e e e e st e e e s nnaneee s 382
20.5.3. IMX over Burlap/HESSIaN/SOARPccoiiiiiee ettt 382

20.6. Accessing MBEANS VIAPIOXIESuueviiiii ittt e e 382

P20 I A N[1= 1 o RSO 383
20.7.1. Registering Listenersfor Notificationsccccceee i, 383
20.7.2. Publishing NOLTICAHIONSccoiiiiiiiiiiiiiee e 385

20.8. FUIMNEr RESOUITESeeiiiiee ettt e e e ettt e e e e e e et e e e e e e s e sttt e e e e aeeeeaanneeeeeeaaeess 386

P20 T [@ N O 1 PSPPSR 388

P24 5 I 1 1 LF 1 o o SR 388

p2 I ©te 11 To 1011 o To [O USSR 388
21.2.1. ConNECLOr CONFIGUIALIONuviieeiiiiiee et e et e e et e e enneeeas 388
21.2.2. Connecti onFact ory configuration in SPringccccceeeee e, 389
21.2.3. Configuring CCl CONNECLIONSuviiiiiiiieeiiiiiee et 389

Spring Framework (2.0.6) X

The Spring Framework - Reference Documentation

21.2.4. Using asingle CCl CONNECLIONccouiuireeeiiiiiieeeeiieee e st e e e e e 390
21.3. Using Spring's CCl aCCESS SUPPOIT ...eeeeeeiiiiiriieiieeeeeeseititereeeeeeeessentrreeeeeeeessesnnrnreeeaaeeas 390
P2 G T T =o' {0 o) 01V £ o o PR 391

P G A I o LY o o R =101 o T 391
21.3.3. DAO SUPPOIT .ttt e e ettt e st e e e e e e e e st e e e e e e e e s s st b e e ee e e e e e e nnnrenes 393
21.3.4. Automatic output record generationceeeeeeiieciiiiereeee e e eieeee e e e e e 393
21.3.5. SUMIMEAIY ooiiiiii i 393
21.3.6. Using aCCl Connection andinteraction directlyccccccoviiiiiiiiiicininnnn. 394
21.3.7. Example for Cci Templ at @ USAQEccovveiurireieeeeeeeesciiteeee e e e e e s s sentrrneee e e e e e s e sannenees 395
21.4. Modeling CCl access as Operation ODJECSeeveiiirrreeriireie e e e e 397
21.4.1. Mappi NGRECOTr AOPEI AL T ON .uuieeiiiiieeeiiieeeeeitieee e et e eeeeat e e eeestaeeeestnaeasestaaaesestnaaaes 397
21.4.2. Mappi NgCOMMAr @AQDET AL T 0N 1uvuiiieeeeeieiiiiiiieseeeeeeeettra e e eeeeeeeetta e eeeeeeeessnraaeaeas 397
21.4.3. Automatic output record generationcoeeeeeiiiciiimiieee e eiiieeee e e e e e e 398
2144, SUMIMAIY iiiiiiieeiiiiie et e e et e e e e e e e et bbb s e e e e e e e e e bbb r e e e e e e eeebaba e eeas 398
21.4.5. Example for Mappi ngRecor dOper ati on USAQEocuvvveerrereeeseineeireeeeeeeeseenenennens 398
21.4.6. Example for Mappi ngConmAr ea0per at i 0N USAQEc.vvvveeeeeeeeeieinrirneeeeeeesseesnennnns 400

P2 L T I =15 o o RS 401
12272 = 1 - R 403
P75 W [1o [F ox 1 o] o IR PP PPP PRI 403
P A U L o L= OSSO 403
22.2.1. Basic Mai | Sender and Si npl eMai | Message USAQEuvvveeeeeeereiiiurrnerereeeeeeessnennnns 403
22.2.2. Using the JavaMai | Sender and the M neMessagePreparat orvveeeveeeeeiiiennnnen. 404
22.3. Using the JavaMail M meMessageHel PEIc.uvvveiieeeeiiiiiiiiiieeee e e e e s eciirree e e e e e e e e e saarraeeeea e 405
22.3.1. Sending attachments and iNliNE FESOUICEScoovurieeiiiiriee e 406
22.3.2. Creating email content using atemplating librarycocooeoei i, 406

23. Scheduling and Thread POOIINGccooiiiiiiiiie e 409
pZ2C T N 1 1 [o 1 o o SR 409
23.2. Using the OpenSymphony Quartz Schedulercccovvieviieiiiiice e, 409
23.2.1. Using the JODDELAIIBEANccocuiiiiiiiiiiie i 409
23.2.2. Using the Met hodl nvoki ngJobDet @i | FACt 0 YBEANvvvereeeeeeiiiiiiiieeeeeeeeseeinnennes, 410
23.2.3. Wiring up jobs using triggers and the Schedul er Fact or yBeanceeeeeeeeiuvvvnnen. 410

23.3. USING JDK TIMEr SUPPOIT ...cceeeee e 411
23.3.1. Creating CUSLOM LIMENSooviiiiiiiee ettt e e e e e s e e e e e s s e e e e e e e e e ennreaees 411
23.3.2. Using the Met hodl nvoki ngTi mer TaskFact 0F YBEANuevvveeeeeiniurireeereeeeessnnneenens 412
23.3.3. Wrapping up: setting up the tasks using the Ti mer Fact oryBeanccccvvveeee. 412
23.4. The Spring TaskExecut or @DSITACTIONcoiiiiiiiieiiiiiie e 413
23.4.1. TasSKEXECUL OF TYPEScieiiieeeieeie s e e e e e ettt s e e e e e e et s e e e e e e e e et s e e e e e e eeeannn e ees 413
23.4.2. USING ATASKEXECUL OF 1eveeiuiiieeeiitrieesaiteeeesssieeessssbaeessssssneeesssbeeeessnbeeeessnnnseeens 414

pZ B D)/ o= o g Tl ol o B E=To TSRS B o] o o] o APPSR 416
Pt T [Lo I8 o o o [PPSO PRI 416
24.2. A TITSEEXAIMPIE ... 416
24.3. Defining beans that are backed by dynamic languagescccccovveiviviieeeee e, 418
24.3.1. COMIMON CONCEPLS ..eerieeeeiiiuiitrreeeteessaaastbbeeeeeaeessaasnbene e e e e e s s s snnbbrnreeeeeeesaannnrnnes 418
24.3.2. JRUDY DEENSoeiiiiiiiiie e 422
24.3.3. GIOOVY DEANSeiiiiiiiiiieiiite ettt ettt e et e e s 424
24.3.4. BEaANSE DEANS ...t 426
244, SCENAIOSvveieiiitiee e e ettt e e ettt e e ettt e e s s bttt e e s s be et e e e bt et e e e aabe e e e e e s bb e e e e e bbe e e e e a bt e e e e e nnnreee s 427
24.4.1. Scripted Spring MV C CONrOlENSoooiviiieiiiiiie e 427
24.4.2. SCrHPted Validatorsccoiiiiiiiiiiiie et 428
245, BitSANU DODS ... a e e e e aaaeeas 429
24.5.1. AOP - advising scripted beansccccce e, 429
24.5.2. SCOPING ..evteeeeeiteee ettt ettt e e e sttt e e et e e e st et e e e e sbe e e e e aabbe e e e e a b e e e e e annnreee s 429

Spring Framework (2.0.6) Xi

The Spring Framework - Reference Documentation

24.6. FUIMNEr RESOUITESviiiiieeeiiieiiieiee e e e e e e s ettt e e e e e e e st e e e e e e e e e st aeeeeaaeeesaansnteneeeaeeens 430
25. Annotationsand Source Level Metadata SUPPOITovvvveeieeeeiiiiiieeeee e 431
P2 T I 1 1 L1 o 1 o o SRR 431
25.2. Spring's Metadala SUPPOITcoooeeeieiii e 432
PTG T AN 0 o) = (o] 1RSSR 433
P I T (2 =Y U I =Y RO 433
25.3.2. Other @ANNGLELIONS TN SPIING .vvevveeeeiiiiiiieiie e e e e 434
25.4. Integration with Jakarta Commons AttribULEScceviiiiiiiieiiiiee e 434
25.5. Metadata and Spring AOP aUtOPIrOXYiNGuvvvereeeeeeeiiiiiireereeeeesssiirrrereeeeeesssssnssrereeaees 436
25.5.1. FUNAAMENTAISeiiiiiiiiie e st ee e e e e e s r e e e e e e s st re e e e e e e e eennsnrenees 436
25.5.2. Declarative transaction Managementcooeveveeeiiii i 437
25.5.3. POOIING ..ttt 437
25.5.4. CUSIOM MELAOAEAeeiiieeeiiiieiiiie e e e e e e e e e e 438
25.6. Using attributes to minimize MV C web tier configurationcccccceeeeeeeiiiiiiineneeenn, 438
V. SaMPIE BPPIICALIONSeeeeiiie ettt e et e e e bt e e e st e e e e e b b e e e e e s e e e e e rr e e e aan 441
26. ShOWCASE APPIICALIONSoieiiiiiiiiiie e e e e e e r e e e e e s s e bbb e e e e e e e e e e naanrnees 442
P22 T I 1 1 L1 o o o USSR 442
26.2. Spring MV C Controllersimplemented in adynamic languageccccoeeeeeeeeeeeeeeeenn, 442
26.2.1. Build and deploymentc.coviiiiieeii e 442

26.3. Implementing DAOs using Si npl eJdbcTenpl at e and @Reposi tory
... 443
P2 Tee T T I 0= o (o 1 7= 11 o PR 443
26.3.2. The dataacCesS ODJECEScccuuviiiiie i 443
26.3.3. BUIIG ..o e naaaa s 443
A. XML Schema-based CONFIQUIATIONuuuuuuueuuieiuueuereeeneeerenrenrerereerrerrererreee.. 444
) I 111 oo [0 [o PRSP PPPR PP 444
A.2. XML Schema-based CONfIQUIALioNcooiiiiiiiiiiiiie et 444
A.2.1. Referencingthe SChemas ..o 444
y N 1 (T o g 1 = SR 445
A.2.3. THE | €8 SCNEIMA ...t e e e e e e e e e s e e e as 451
A.2.4, TRET QNG SCNEMA ..uuiiiiiiiiiiiiiiiiiitiiereue et e e reeeeerarereseeeaesseessssrssasssssssssssssassssssssssrsnnes 454
A.2.5. Thetx (transaction) SCHEMAuuuuiiiiiiiiiiiiiiiriierrrr . 454
A.2.6. TRE AP SCNEIMAo e e e e e e e s e e e as 455
N A 1 1] AT o 1 = SRS 455
A.2.8. THEDEANS SCNEMIA ...vvvvvviviviiiiiriireirrirrrrrrererrrererrrerrr.———————————————.r.—.—.—.—.—.—.———.——————..—.——.... 455
A3, SEtiNG UP YOUN IDEooiiiiiiiie ittt e st e e e s e e e s nnbne e e e e 456
AL3.L. SENG UP ECHPSE .vvvvvviriiieiiiiieiiieieueieteensereerrernersnrenererreerrrrrererernre 456
A.3.2. Setting up INTEIIITIDEA ... 458
y R R T 1011 1= 0] IS 1= 461
B. EXteNSiDIE XML GULNOMNGcvviiiiiiie et s s e e e e e e s sttt e e e e e e e s s sennbrbneeeaaeeeeanes 462
2 OO 1 01 0o [o) PRSP 462
B.2. AULhOrNG thE SCNEMA ... e e e e a e 462
B.3. COodiNG 8 NAMESPACEHANGI 5 ..eeiiiiiiiieiaiiiiie e ettt e e ettt e e et e e et e e e st e e e s sbb e e e e enbe e e e s annneeeeaae 463
B.4. Coding @aBeanDef i Ni i ONPAr SEI iiiiiiiiiiiiisisisisesssssesssss s s s s s s s s ss s s s s s s e s s s s s e s s s e s s s s s s s s s s s s s s e s e e e e e aeenanas 464
B.5. Registering the handler and the SChemaooiiiiiiii e 465
B.5.1. " NETA- I NF/ SPring. RANAL € S' ooeuuieiiiiii i e i e e e et e et e e e e e e e e et e e e e et e e e e et e eeeeaaanns 465
B.5.2. ' NETA- | NF/ SPriNg. SCHEITAS' iiiivtuiiiiiitiiieeieteeeeseteeeeeeb e e e s et e e e setaeeesetaeeesetaaeeseaaanss 465
B.6. Using acustom extension in your Spring XML CONfigurationccceeeiniieeeeniieeeenniineeennes 465
B.7. MEALEr BXAMPIES ...eeeiiiiiii ittt e e e e e e e e e e e s s et e e e e e e e e s s s saatbteeeeeeeeesansnranees 466
B.7.1. Nesting custom tags Within CUSIOM TagSvvveeeiiiiiie et 466
B.7.2. Custom attributes on'normal’ elementsoooo oo 469
B.8. FUINEr RESOUICESeiiieieii ittt e e e e s e ettt e e e e e e e e e e e e e s s ettt a e e e aaeesessntaaneeneaeeeaansnennees 470
Spring Framework (2.0.6) Xii

The Spring Framework - Reference Documentation

C. SPrinNg-DEANS-2. 0. OL A .uciiiieeeriiiiiiiiseeeeeeeeetttar e s eeeeereeataaaaeeeeeeeeetanaaaaeeeeesssnnnnnaeaaeseesrsrnnnsaeeaaeeenes 472
[TR o 1 oo 8 1 o PP PPRPPR 481
D.L. INEOTUCTION ..oiiiiitiiiiiie ittt ettt e e st e s e e e e e e s e e s sbn e e s ne e e sbe e e 481
[202 I 0= TN I = o PR UPRRSOTRRR 481
D.3. ThEeScapeBOdy TA0 ..uuiieeeiiieiiiiiitiee e e s s ettt e e e e e e e ettt e e e eeeessae et raaeraaaesssansnttrareaaaeesannnsnnnnees 481
D S o Tty = I T = oY RN = SRS 482
D.5. THE Nt M ESCAPE TA0 wvrriieeeiiiiiiiiiiie it e e e e s ettt e e e e e et e e e e e e s et e e e e e e e s s s santaaeeeeaeeesannnssrnnees 482
D.6. THEMBSSAGE TAY ..vveeiiirieeeiitiiie ettt ettt et et e e ekt e e e e et e e e e e s b e e e e e nbe e e e s annereeeaae 482
D.7. Thenest @dPat N TA0ciiicii i e e e e e s e e e e e s s et e e e e e e e e s s santrbeeeeeeeeseennssrnnees 483
(DR A I 0= A=Y 1 = PP P PP PP R PUPPPPOPUPRPN 483
2R TR I TR A =T oy e 1 = o 484
S o g aTo Ty o o 1 o PRSPPI 485
E.L INErOQUCTION ... 485
A I Yo oYt 1o Gl = o PP 485
[R I oYY o TR = O PSP P PP PUPPPPRPPPPRP 487
N I TR T 1) = o [P URPURRPP 488
E.5. TRE NI ddEN T8O ..veeieiiiiiiie ettt e e e e e e s nbb e e e e e e e e e e e e aan 489
T I L= T Yo TV A = 490
A I Y Y Y= = o [P P 491
E.8. TNEOPE i ON T8O ..veeieiiiiiiie ittt et e e e e e s e e e e e e e e e e aan 492
e I I XY o AT YN 7 PRSP 493
E.10. THEPASSWOT 0 LAY +iiiiiteeieiiiiiie ettt e et e e e e e e e e e e e e e e e e e annn e e e e e 493
E.11. Theradi 0BUt 0N T80 .iiiiiii ettt e e e e e e e s et e e e e e e e e e e s s anbr b e e e eeeeeseenssrnnns 495
E.12. TRESEI €CE TAY .eveiiiiiiiiie ittt ettt ettt e e ekt e e et r e e e e nb b e e e e e nbn e e e s anbneeeeaae 496
Nt T I S = A VY- = o 498

Spring Framework (2.0.6) Xiii

Preface

Developing software applications is hard enough even with good tools and technologies. Implementing
applications using platforms which promise everything but turn out to be heavy-weight, hard to control and not
very efficient during the development cycle makes it even harder. Spring provides a light-weight solution for
building enterprise-ready applications, while still supporting the possibility of using declarative transaction
management, remote access to your logic using RMI or web services, and various options for persisting your
data to a database. Spring provides a full-featured MV C framework, and transparent ways of integrating AOP
into your software.

Spring could potentially be a one-stop-shop for al your enterprise applications, however, Spring is modular,
allowing you to use just those parts of it that you need, without having to bring in the rest. Y ou can use the |oC
container, with Struts on top, but you could also choose to use just the Hibernate integration code or the JDBC
abstraction layer. Spring has been (and continues to be) designed to be non-intrusive, meaning dependencies on
the framework itself are generally none (or absolutely minimal, depending on the area of use).

This document provides a reference guide to Spring's features. Since this document is still to be considered
very much work-in-progress, if you have any requests or comments, please post them on the user mailing list or
on the support forums at http://forum.springframework.org/.

Before we go on, a few words of gratitude are due to Christian Bauer (of the Hibernate team), who prepared
and adapted the DocBook-XSL software in order to be able to create Hibernate's reference guide, thus aso
allowing usto create this one. Also thanks to Russell Healy for doing an extensive and valuable review of some
of the material.

Spring Framework (2.0.6) Xiv

http://forum.springframework.org/
http://www.hibernate.org/

Chapter 1. Introduction

Background

In early 2004, Martin Fowler asked the readers of his site: when talking about Inversion of Control: “the
guestion is, what aspect of control are [they] inverting?’. Fowler then suggested renaming the principle
(or at least giving it a more self-explanatory name), and started to use the term Dependency Injection. His
article then continued to explain the ideas underpinning the Inversion of Control (1oC) and Dependency
Injection (DI) principle.

If you need a decent insight into loC and DI, please do refer to said article
http://martinfowl er.com/articles/injection.html.

Java applications (aloose term which runs the gamut from constrained applets to full-fledged n-tier server-side
enterprise applications) typically are composed of a number of objects that collaborate with one another to form
the application proper. The objects in an application can thus be said to have dependencies between themselves.

The Java language and platform provides a wealth of functionality for architecting and building applications,
ranging all the way from the very basic building blocks of primitive types and classes (and the means to define
new classes), to rich full-featured application servers and web frameworks. One area that is decidedly
conspicuous by its absence is any means of taking the basic building blocks and composing them into a
coherent whole; this area has typically been left to the purvey of the architects and developers tasked with
building an application (or applications). Now to be fair, there are a number of design patterns devoted to the
business of composing the various classes and object instances that makeup an all-singing, al-dancing
application. Design patterns such as Factory, Abstract Factory, Builder, Decorator, and Service Locator (to
name but a few) have widespread recognition and acceptance within the software development industry
(presumably that is why these patterns have been formalized as patternsin the first place). Thisis all very well,
but these patterns are just that: best practices given a name, typically together with a description of what the
pattern does, where the pattern is typically best applied, the problems that the application of the pattern
addresses, and so forth. Notice that the last paragraph used the phrase “... a description of what the pattern
does...”; pattern books and wikis are typically listings of such formalized best practice that you can certainly
take away, mull over, and then implement yourself in your application.

The 10C component of the Spring Framework addresses the enterprise concern of taking the classes, objects,
and services that are to compose an application, by providing a formalized means of composing these various
disparate components into a fully working application ready for use. The Spring Framework takes best
practices that have been proven over the years in numerous applications and formalized as design patterns, and
actually codifies these patterns as first class objects that you as an architect and developer can take away and
integrate into your own application(s). This is a Very Good Thing Indeed as attested to by the numerous
organizations and institutions that have used the Spring Framework to engineer robust, maintainable
applications.

1.1. Overview

The Spring Framework contains a lot of features, which are well-organized in seven modules shown in the
diagram below. This chapter discusses each of the modulesin turn.

Spring Framework (2.0.6) 15

http://martinfowler.com/articles/injection.html

Introduction

ORM Web

DAO

Hibernate Sorina Web MVC
_ pring We
Spring JDBC T;;I:?nk J E E Framework Integratior
Transaction JDO Struts
management 0JB WebWork
iBatis JMX Tapestry
JMS JSF
JCA Rich View Support
Remoting JSPs
EJBs Velocity
Email FreeMarker
PDF
Jasper Reports
AOP

Spring Portlet MVC

Spring AOP
Aspectd integration

Core

The loC container

Overview of the Spring Framework

The Core package is the most fundamental part of the framework and provides the 10C and Dependency

Spring Framework (2.0.6) 16

Introduction

Injection features. The basic concept here is the BeanFact ory, which provides a sophisticated implementation
of the factory pattern which removes the need for programmatic singletons and allows you to decouple the
configuration and specification of dependencies from your actual program logic.

The Context package build on the solid base provided by the Core package: it provides away to access objects
in a framework-style manner in a fashion somewhat reminiscent of a JNDI-registry. The context package
inherits its features from the beans package and adds support for internationalization (118N) (using for example
resource bundles), event-propagation, resource-loading, and the transparent creation of contexts by, for
example, a servlet container.

The DAO package provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding and
parsing of database-vendor specific error codes. Also, the JIDBC package provides away to do programmatic as
well as declarative transaction management, not only for classes implementing special interfaces, but for all
your POJOs (plain old Java objects).

The ORM package provides integration layers for popular object-relational mapping APIs, including JPA, JDO,
Hibernate, and iBatis. Using the ORM package you can use all those O/R-mappers in combination with all the
other features Spring offers, such as the simple declarative transaction management feature mentioned
previoudly.

Spring's AOP package provides an AOP Alliance-compliant aspect-oriented programming implementation
allowing you to define, for example, method-interceptors and pointcuts to cleanly decouple code implementing
functionality that should logically speaking be separated. Using source-level metadata functionality you can
also incorporate all kinds of behavioral information into your code, in a manner similar to that of .NET
attributes.

Spring's Web package provides basic web-oriented integration features, such as multipart file-upload
functionality, the initialization of the 10C container using servlet listeners and a web-oriented application
context. When using Spring together with WebWork or Struts, this is the package to integrate with.

Spring's MVC package provides a Model-View-Controller (MVC) implementation for web-applications.
Spring's MV C framework is not just any old implementation; it provides a clean separation between domain
model code and web forms, and allows you to use al the other features of the Spring Framework.

1.2. Usage scenarios

With the building blocks described above you can use Spring in al sorts of scenarios, from applets up to
fully-fledged enterprise applications using Spring's transaction management functionality and web framework
integration.

Spring Framework (2.0.6) 17

Introduction

Form Controllers Multipart Resolver Dynamic binding of Integration with JSP,
handling form part data to the domain Velocity, XSLT, PDF,
3 . to handle file uploads
interaction model Excel

Spring Web MVC
\

‘ WebApplicationContext providing e.g. messaging

N

Spring Web
—‘ Declarative transaction management for POJOs Remote
Sending access via
Email . Hession,
Spring Context Burlap, SOAP
Custom business logic
Spring AOP Spring ORM

Hibernate mappings
Custom Hibernate DAOs

Spring Core Spring DAO

Servlet Container (Tomcat / Jetty)

Typical full-fledged Spring web application

By using Spring's declarative transaction management features the web application is fully transactional, just as
it would be when using container managed transactions as provided by Enterprise JavaBeans. All your custom
business logic can be implemented using ssimple POJOs, managed by Spring's 10C container. Additional
services include support for sending email, and validation that is independent of the web layer enabling you to
choose where to execute validation rules. Spring's ORM support is integrated with JPA, Hibernate, JDO and
iBatis; for example, when using Hibernate, you can continue to use your existing mapping files and standard
Hibernate Sessi onFact ory configuration. Form controllers seamlessly integrate the web-layer with the domain
model, removing the need for Act i onFor s Or other classes that transform HTTP parameters to values for your
domain model.

Web frontend using
Struts or WebWork

Spring WEB

Spring AOP Spring ORM

Transaction management
Using Spring decl. trans.

Hibernate mappings
Custom Hibernate DAOs

Spring Core Spring DAO

Servlet Container (Tomcat / Jetty)

Spring middle-tier using a third-party web framework

Sometimes the current circumstances do not allow you to completely switch to a different framework. The
Spring Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing

Spring Framework (2.0.6) 18

Introduction

front-ends built using WebWork, Struts, Tapestry, or other Ul frameworks can be integrated perfectly well with
a Spring-based middle-tier, allowing you to use the transaction features that Spring offers. The only thing you

need to do is wire up your business logic using an Appl i cati onCont ext and integrate your web layer using a
WebAppl i cat i onCont ext .

JAX RPC client Hessian client Burlap client R4

client

Transparent remote access (using remote package)

Custom logic contained by beans

Spring Core Spring Context

Servlet Container (e.g. Tomcat / Jetty)

Remoting usage scenario

When you heed to access existing code via web services, you can use Spring's Hessi an-, Burl ap-, Rni- Of

JaxRpcProxyFactory classes. Enabling remote access to existing applications suddenly is not that hard
anymore.

EJB Access layer using
Slsbinvokers

Spring-managed EJBs S GO

Spring Core Spring DAO

Application Server (e.g. JBoss, WebLogic)

EJBs - Wrapping existing POJOs

The Spring Framework also provides an access- and abstraction- layer for Enterprise JavaBeans, enabling you

to reuse your existing POJOs and wrap them in Stateless Session Beans, for use in scalable, failsafe web
applications that might need declarative security.

Spring Framework (2.0.6) 19

Chapter 2. What's new in Spring 2.07?

2.1. Introduction

If you have been using the Spring Framework for some time, you will be aware that Spring has just undergone
amajor revision.

JDK Support

The Spring Framework continues to be totally compatible with al versions of Java since (and including)
Java 1.3. This means that 1.3, 1.4, and 1.5 are supported, although some advanced functionality of the
Spring Framework may not be available to you if you are (for example) committed to using Java 1.3.

This revision includes a host of new features, and a lot of the existing functionality has been reviewed and
improved. In fact, so much of Spring is shiny and improved that the Spring development team decided that the
next release of Spring merited an increment of the version number; and so Spring 2.0 was announced in
December 2005 at the Spring Experience conference in Florida

This chapter is a guide to the new and improved features of Spring 2.0. It is intended to provide a high-level
summary so that seasoned Spring architects and developers can become immediately familiar with the new
Spring 2.0 functionality. For more in-depth information on the features, please refer to the corresponding
sections hyperlinked from within this chapter.

Some of the new and improved functionality described below has been (or will be) backported into the Spring
1.2.x release line. Please do consult the changelogs for the 1.2.x releases to see if afeature has been backported.

2.2. The Inversion of Control (IoC) container

One of the areas that contains a considerable number of 2.0 improvementsis Spring's |oC container.

2.2.1. Easier XML configuration

Spring XML configuration is now even easier, thanks to the advent of the new XML configuration syntax
based on XML Schema. If you want to take advantage of the new tags that Spring provides (and the Spring
team certainly suggest that you do because they make configuration less verbose and easier to read), then do
read the section entitled Appendix A, XML Schema-based configuration.

On arelated note, there is anew, updated DTD for Spring 2.0 that you may wish to reference if you cannot take
advantage of the XML Schema-based configuration. The DOCTY PE declaration is included below for your
convenience, but the interested reader should definitely read the ' spri ng- beans-2. 0. dtd" DTD included in
the' di st/ resources' directory of the Spring 2.0 distribution.

<! DOCTYPE beans PUBLIC "-//SPRI NG / DTD BEAN 2. 0// EN'
"http://ww. springframework. org/ dtd/spring-beans-2.0.dtd">

2.2.2. New bean scopes

Spring Framework (2.0.6) 20

http://www.thespringexperience.com/

What's new in Spring 2.0?

Previous versions of Spring had 0C container level support for exactly two distinct bean scopes (singleton and
prototype). Spring 2.0 improves on this by not only providing a number of additional scopes depending on the
environment in which Spring is being deployed (for example, request and session scoped beans in a web
environment), but also by providing integration points so that Spring users can create their own scopes.

It should be noted that athough the underlying (and internal) implementation for singleton- and
prototype-scoped beans has been changed, this change is totally transparent to the end user... no existing
configuration needs to change, and no existing configuration will break.

Both the new and the original scopes are detailed in the section entitled Section 3.4, “Bean scopes”.

2.2.3. Extensible XML authoring

Not only is XML configuration easier to write, it is now also extensible.

What 'extensible’ means in this context is that you, as an application developer, or (more likely) as athird party
framework or product vendor, can write custom tags that other developers can then plug into their own Spring
configuration files. This alows you to have your own domain specific language (the term is used loosely here)
of sorts be reflected in the specific configuration of your own components.

Implementing custom Spring tags may not be of interest to every single application developer or enterprise
architect using Spring in their own projects. We expect third-party vendors to be highly interested in
devel oping custom configuration tags for use in Spring configuration files.

The extensible configuration mechanism is documented in Appendix B, Extensible XML authoring.

2.3. Aspect Oriented Programming (AOP)

Spring 2.0 has a much improved AOP offering. The Spring AOP framework itself is markedly easier to
configure in XML, and significantly less verbose as a result; and Spring 2.0 integrates with the Aspect]
pointcut language and @Aspect] aspect declaration style. The chapter entitled Chapter 6, Aspect Oriented
Programming with Soring is dedicated to describing this new support.

2.3.1. Easier AOP XML configuration

Spring 2.0 introduces new schema support for defining aspects backed by regular Java objects. This support
takes advantage of the AspectJ pointcut language and offers fully typed advice (i.e. no more casting and
bj ect [] argument manipulation). Details of this support can be found in the section entitled Section 6.3,
“ Schema-based AOP support”.

2.3.2. Support for @AspectJ aspects
Spring 2.0 also supports aspects defined using the @A spectJ annotations. These aspects can be shared between

Aspect] and Spring AOP, and require (honestly!) only some simple configuration. Said support for @AspectJ
aspectsis discussed in Section 6.2, “ @A spectJ support”.

2.4. The Middle Tier

Spring Framework (2.0.6) 21

What's new in Spring 2.0?

2.4.1. Easier configuration of declarative transactions in XML

The way that transactions are configured in Spring 2.0 has been changed significantly. The previous 1.2.x style
of configuration continues to be valid (and supported), but the new style is markedly less verbose and is the
recommended style. Spring 2.0 aso ships with an AspectJ aspects library that you can use to make pretty much
any object transactional - even objects not created by the Spring 10C container.

The chapter entitled Chapter 9, Transaction management contains all of the details.

2.4.2. JPA

Spring 2.0 ships with a JPA abstraction layer that is similar in intent to Spring's JDBC abstraction layer in
terms of scope and general usage patterns.

If you are interested in using a JPA-implementation as the backbone of your persistence layer, the section

entitled Section 12.6, “JPA” is dedicated to detailing Spring's support and value-add in this area.

2.4.3. Asynchronous JMS

Prior to Spring 2.0, Spring's IMS offering was limited to sending messages and the synchronous receiving of
messages. This functionality (encapsulated in the JmsTenpl ate class) is great, but it doesn't address the
requirement for the asynchronous receiving of messages.

Spring 2.0 now ships with full support for the reception of messages in an asynchronous fashion, as detailed in
the section entitled Section 19.4.2, “ Asynchronous Reception - Message-Driven POJOS'.

2.4.4.IJDBC

There are some small (but nevertheless notable) new classes in the Spring Framework's JDBC support library.
The first, NamedPar anet er JdbcTenpl at e, provides support for programming JDBC statements using named
parameters (as opposed to programming JDBC statements using only classic placeholder (' ?*) arguments.

Another of the new classes, the Si npl eJdbcTenpl at e, is amed at making using the JdbcTenpl at e even easier
to use when you are developing against Java 5+ (Tiger).

2.5. The Web Tier

The web tier support has been substantially improved and expanded in Spring 2.0.

2.5.1. A form tag library for Spring MVC

A rich JSP tag library for Spring MV C was the JIRA issue that garnered the most votes from Spring users (by a
wide margin).

Spring 2.0 ships with a full featured JSP tag library that makes the job of authoring JSP pages much easier
when using Spring MV C; the Spring team is confident it will satisfy all of those developers who voted for the
issue on JIRA. The new tag library isitself covered in the section entitled Section 13.9, “Using Spring's form
tag library”, and a quick reference to all of the new tags can be found in the appendix entitled Appendix E,
spring-form.tld.

Spring Framework (2.0.6) 22

What's new in Spring 2.0?

2.5.2. Sensible defaulting in Spring MVC

For alot of projects, sticking to established conventions and having reasonable defaultsis just what the projects
need... this theme of convention-over-configuration now has explicit support in Spring MV C. What this means
isthat if you establish a set of naming conventions for your Control | ers and views, you can substantially cut
down on the amount of XML configuration that is required to setup handler mappings, view resolvers,

Model AndVi ew instances, etc. Thisis a great boon with regards to rapid prototyping, and can aso lend a degree
of (always good-to-have) consistency across a codebase.

Spring MVC's convention-over-configuration support is detailed in the section entitled Section 13.11,
“Convention over configuration”

2.5.3. Portlet framework

Spring 2.0 ships with a Portlet framework that is conceptually similar to the Spring MV C framework. Detailed
coverage of the Spring Portlet framework can be found in the section entitled Chapter 16, Portlet MVC
Framework.

2.6. Everything else

Thisfinal section outlines al of the other new and improved Spring 2.0 features and functionality.

2.6.1. Dynamic language support

Spring 2.0 now has support for beans written in languages other than Java, with the currently supported
dynamic languages being JRuby, Groovy and BeanShell. This dynamic language support is comprehensively
detailed in the section entitled Chapter 24, Dynamic language support.

2.6.2. IMX

The Spring Framework now has support for Noti fi cati ons; it is also possible to exercise declarative control
over the registration behavior of MBeans with an MBeanSer ver .

* Section 20.7, “Notifications”

» Section 20.2.5, “Controlling the registration behavior”

2.6.3. Task scheduling

Spring 2.0 offers an abstraction around the scheduling of tasks. For the interested devel oper, the section entitled
Section 23.4, “The Spring TaskExecut or abstraction” contains all of the details.

2.6.4. Java 5 (Tiger) support

Find below pointers to documentation describing some of the new Java 5 support in Spring 2.0.

e Section 9.5.6, “Using @r ansact i onal ”

Spring Framework (2.0.6) 23

What's new in Spring 2.0?

* Section 25.3.1, “ @Requi r ed”

* Section 11.2.3, “Si npl eJdbcTenpl at e”
* Section 12.6, “JPA”

e Section 6.2, “ @A spectJ support”

e Section 6.8.1, “Using AspectJ to dependency inject domain objects with Spring”

2.7. Migrating to Spring 2.0

This final section details issues that may arise during any migration from Spring 1.2.x to Spring 2.0. Feel free
to take this next statement with a pinch of salt, but upgrading to Spring 2.0 from a Spring 1.2 application should
simply be a matter of dropping the Spring 2.0 jar into the appropriate location in your application's directory
structure.

The keyword from the last sentence was of course the “should”. Whether the upgrade is seamless or not
depends on how much of the Spring APIs you are using in your code. Spring 2.0 removed pretty much all of
the classes and methods previously marked as deprecated in the Spring 1.2.x codebase, so if you have been
using such classes and methods, you will of course have to use aternative classes and methods (some of which
are summarized below).

With regards to configuration, Spring 1.2.x style XML configuration is 100%, satisfaction-guaranteed
compatible with the Spring 2.0 library. Of courseif you are still using the Spring 1.2.x DTD, then you won't be
able to take advantage of some of the new Spring 2.0 functionality (such as scopes and easier AOP and
transaction configuration), but nothing will blow up.

The suggested migration strategy isto drop in the Spring 2.0 jar(s) to benefit from the improved code present in
the release (bug fixes, optimizations, etc.). You can then, on an incremental basis, choose to start using the new
Spring 2.0 features and configuration. For example, you could choose to start configuring just your aspects in
the new Spring 2.0 style; it is perfectly valid to have 90% of your configuration using the old-school Spring
1.2.x configuration (which references the 1.2.x DTD), and have the other 10% using the new Spring 2.0
configuration (which references the 2.0 DTD or XSD). Bear in mind that you are not forced to upgrade your
XML configuration should you choose to drop in the Spring 2.0 libraries.

2.7.1. Changes

For a comprehensive list of changes, consult the' changel og. txt* file that is located in the top level directory
of the Spring Framework 2.0 distribution.

2.7.1.1. Jar packaging

The packaging of the Spring Framework jars has changed quite substantially between the 1.2.x and 2.0 releases.
In particular, there are now dedicated jars for the JDO, Hibernate 2/3, TopLink ORM integration classes: they
areno longer bundled in the core ' spring.jar' fileanymore.

2.7.1.2. XML configuration

Spring 2.0 ships with XSDs that describe Spring's XML metadata format in a much richer fashion than the
DTD that shipped with previous versions. The old DTD is till fully supported, but if possible you are
encouraged to reference the XSD files at the top of your bean definition files.

Spring Framework (2.0.6) 24

What's new in Spring 2.0?

One thing that has changed in a (somewhat) breaking fashion is the way that bean scopes are defined. If you are
using the Spring 1.2 DTD you can continue to use the ' si ngl eton' attribute. You can however choose to
reference the new Spring 2.0 DTD which does not permit the use of the' si ngl et on' attribute, but rather uses
the' scope' attribute to define the bean lifecycle scope.

2.7.1.3. Deprecated classes and methods

A number of classes and methods that previously were marked as @lepr ecat ed have been removed from the
Spring 2.0 codebase. The Spring team decided that the 2.0 release marked a fresh start of sorts, and that any
deprecated 'cruft’ was better excised now instead of continuing to haunt the codebase for the foreseeable future.

As mentioned previoudly, for a comprehensive list of changes, consult the' changel og. t xt ' file that is located
in the top level directory of the Spring Framework 2.0 distribution.

The following classes/interfaces have been removed from the Spring 2.0 codebase:

* Resul t Reader : Usethe Rowvapper interfaceinstead.

e BeanFact or yBoot st rap : Consider using aBeanFact or yLocat or Or acustom bootstrap class instead.

2.7.1.4. Apache 0OJB

Please note that support for Apache OJB was totally removed from the main Spring source tree; the Apache
OJB integration library is still available, but can be found in it's new home in the Spring Modules project.

2.7.1.5. iBatis

Please note that support for iBATIS SQL Maps 1.3 has been removed. If you haven't done so already, upgrade
to iIBATIS SQL Maps 2.0/2.1.

2.7.1.6. Url Fi | enanmeVi ewControl | er

The view name that is determined by the Ur | Fi | enaneVi ewCont rol | er now takes into account the nested path
of the request. This is a breaking change from the original contract of the url Fi | enanmeVi ewControl | er, and
means that if you are upgrading to Spring 2.0 from Spring 1.x and you are using this class you might have to
change your Spring Web MVC configuration dlightly. Refer to the class level Javadocs of the
Url Fi | enanmeVi enCont rol | er to see examples of the new contract for view name determination.

2.8. Updated sample applications

A number of the sample applications have also been updated to showcase the new and improved features of
Spring 2.0, so do take the time to investigate them. The aforementioned sample applications can be found in the
" sanpl es' directory of the full Spring distribution (* spri ng-wi t h- dependenci es. [zi p|tar.gz]'), and are
documented (in part) in the chapter entitled Chapter 26, Showcase applications.

2.9. Improved documentation

The Spring reference documentation has also substantially been updated to reflect al of the above features new
in Spring 2.0. While every effort has been made to ensure that there are no errors in this documentation, some
errors may nevertheless have crept in. If you do spot any typos or even more serious errors, and you can spare a

Spring Framework (2.0.6) 25

https://springmodules.dev.java.net/

What's new in Spring 2.0?

few cycles during lunch, please do bring the error to the attention of the Spring team by raising an issue.

Special thanks to Arthur Loder for his tireless proofreading of the Spring Framework reference documentation
and Javadocs.

Spring Framework (2.0.6) 26

http://opensource.atlassian.com/projects/spring/

Part |. Core Technologies

This initial part of the reference documentation covers all of those technologies that are absolutely integral to
the Spring Framework.

Foremost amongst these is the Spring Framework's Inversion of Control (10C) container. A thorough treatment
of the Spring Framework's 1oC container is closely followed by comprehensive coverage of Spring's
Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP framework,
which is conceptually easy to understand, and which successfully addresses the 80% sweet spot of AOP
requirements in Java enterprise programming.

Coverage of Spring's integration with AspectJ (currently the richest - in terms of features - and certainly most
mature AOP implementation in the Java enterprise space) is also provided.

Finally, the adoption of the test-driven-development (TDD) approach to software development is certainly
advocated by the Spring team, and so coverage of Spring's support for integration testing is covered (alongside
best practices for unit testing). The Spring team have found that the correct use of 10C certainly does make both
unit and integration testing easier (in that the presence of setter methods and appropriate constructors on classes
makes them easier to wire together on a test without having to set up service locator registries and suchlike)...
the chapter dedicated solely to testing will hopefully convince you of this aswell.

e Chapter 3, The loC container

¢ Chapter 4, Resources

« Chapter 5, Validation, Data-binding, the Beanw apper , and Pr oper t yEdi t or s
e Chapter 6, Aspect Oriented Programming with Spring

e Chapter 7, Soring AOP APIs

» Chapter 8, Testing

Spring Framework (2.0.6) 27

Chapter 3. The loC container

3.1. Introduction

This chapter covers the Spring Framework's implementation of the Inversion of Control (1oC) 1 principle.

BeanFact ory Of Appl i cati onCont ext ?

Users are sometimes unsure whether a BeanFact ory Or an Appl i cat i onCont ext iS best suited for usein a
particular situation. A BeanFactory pretty much just instantiates and configures beans. An
Appl i cationContext also does that, and it provides the supporting infrastructure to enable lots of
enterprise-specific features such as transactions and AOP.

In short, favor the use of an Appl i cat i onCont ext .

The org. springframewor k. beans and org. spri ngf ramewor k. cont ext packages provide the basis for the
Spring Framework's 10C container. The BeanFact or y interface provides an advanced configuration mechanism
capable of managing objects of any nature. The ApplicationContext interface builds on top of the
BeanFact ory (it is a sub-interface) and adds other functionality such as easier integration with Spring's AOP
features, message resource handling (for use in internationalization), event propagation, and application-layer
specific contexts such as the webAppl i cat i onCont ext for usein web applications.

In short, the BeanFactory provides the configuration framework and basic functionality, while the
Appl i cati onCont ext adds more enterprise-centric functionality to it. The Appl i cati onCont ext iS a complete
superset of the BeanFact ory, and any description of BeanFact ory capabilities and behavior is to be considered
to apply to the Appl i cat i onCont ext aswell.

This chapter is divided into two parts, with the first part covering the basic principles that apply to both the
BeanFact ory and Appl i cat i onCont ext , and with the second part covering those features that apply only to the
Appl i cati onCont ext interface.

3.2. Basics - containers and beans

In Spring, those objects that form the backbone of your application and that are managed by the Spring 10C
container are referred to as beans. A bean is simply an object that is instantiated, assembled and otherwise
managed by a Spring 10C container; other than that, there is nothing special about a bean (it is in all other
respects one of probably many objects in your application). These beans, and the dependencies between them,
are reflected in the configuration metadata used by a container.

Why... bean?

The motivation for using the name 'bean’, as opposed to ‘component’ or 'object’ is rooted in the origins of
the Spring Framework itself (it arose partly as a response to the complexity of Enterprise JavaBeans).

3.2.1. The container

1See the section entitled Background

Spring Framework (2.0.6) 28

http://www.springframework.org/docs/api/org/springframework/beans/factory/BeanFactory.html
http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html

The 1oC container

The org. springframework. beans. fact ory. BeanFactory iS the actual representation of the Spring 10C
container that is responsible for containing and otherwise managing the aforementioned beans.

The BeanFactory interface is the central 10C container interface in Spring. Its responsibilities include
instantiating or sourcing application objects, configuring such objects, and assembling the dependencies
between these objects.

There are a number of implementations of the BeanFact or y interface that come supplied straight out-of-the-box
with Spring. The most commonly used BeanFactory implementation is the Xm BeanFactory class. This
implementation allows you to express the objects that compose your application, and the doubtless rich
interdependencies between such objects, in terms of XML. The Xni BeanFact ory takes this XML configuration
metadata and uses it to create a fully configured system or application.

Your Business Objects (PO.JOs)

» The Sprin
Configuration Cuntapine:’g
Metadata
oroduces

Fully configured system

Ready for Use

The Spring 10C container

3.2.1.1. Configuration metadata

As can be seen in the above image, the Spring |10C container consumes some form of configuration metadata;
this configuration metadata is nothing more than how you (as an application developer) inform the Spring
container as to how to “instantiate, configure, and assemble [the objects in your application]”. This
configuration metadata is typically supplied in a simple and intuitive XML format. When using XM L-based
configuration metadata, you write bean definitions for those beans that you want the Spring 10C container to
manage, and then let the container do it's stuff.

Note
e

XML-based metadata is by far the most commonly used form of configuration metadata. It is not
however the only form of configuration metadata that is allowed. The Spring 10C container itself is
totally decoupled from the format in which this configuration metadata is actually written. At the
time of writing, you can supply this configuration metadata using either XML, the Java properties
format, or programmatically (using Spring's public APl). The XML-based configuration metadata

Spring Framework (2.0.6) 29

The 1oC container

format really is simple though, and so the remainder of this chapter will use the XML format to
convey key concepts and features of the Spring 10C container.

Resources

Once you have learned the basics of the |oC container (this chapter), it will also be useful to learn about
Spring's Resour ce abstraction, as described in Chapter 4, Resour ces.

The location path or paths supplied to an Appl i cat i onCont ext constructor are actually resource strings
that allow the container to load configuration metadata from a variety of externa resources such as the
local file system, from the Java CLASSPATH, €tc.

Please be advised that in the vast majority of application scenarios, explicit user code is not required to
instantiate one or more instances of a Spring 10C container. For example, in a web application scenario, a
simple eight (or so) lines of absolutely boilerplate J2EE web descriptor XML in the web. xni file of the
application will typicaly suffice (see Section 3.8.4, “Convenient Appl i cati onCont ext instantiation for web
applications”).

Spring configuration consists of at least one bean definition that the container must manage, but typically there
will be more than one bean definition. When using XML-based configuration metadata, these beans are
configured as <bean/ > elements inside atop-level <beans/ > element.

These bean definitions correspond to the actual objects that make up your application. Typically you will have
bean definitions for your service layer objects, your data access objects (DAOs), presentation objects such as
Struts Action instances, infrastructure objects such as Hibernate SessionFactory instances, JMS Queue
references, etc. (the possibilities are of course endless, and are limited only by the scope and complexity of
your application). (Typically one does not configure fine-grained domain objects in the container.)

Find below an example of the basic structure of XML-based configuration metadata.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schema/ beans http://ww. spri ngframewor k. or g/ schenma/ bee

<bean id="..." class="...">
<!-- collaborators and configuration for this bean go here -->
</ bean>
<bean id="..." class="...">
<l'-- collaborators and configuration for this bean go here -->
</ bean>
<I-- nore bean definitions go here... -->
</ beans>

3.2.2. Instantiating a container

Instantiating a Spring 10C container is easy; find below some examples of how to do just that:

Resource resource = new Fil eSyst enResour ce("beans. xm ") ;
BeanFactory factory = new Xm BeanFact ory(resource);

. Or...

Spring Framework (2.0.6) 30

The 1oC container

Cl assPat hResour ce resource = new Cl assPat hResour ce("beans. xm ") ;
BeanFactory factory = new Xm BeanFactory(resource);

. Or...

Appl i cationCont ext context = new O assPat hXm Appl i cati onCont ext (
new String[] {"applicationContext.xm", "applicationContext-part2.xm"});

/1 of course, an ApplicationContext i S just a BeanFactory
BeanFactory factory = (BeanFactory) context;

3.2.2.1. Composing XML-based configuration metadata

It can often be useful to split up container definitions into multiple XML files. One way to then load an
application context which is configured from all these XML fragments is to use the application context
constructor which takes multiple Resour ce locations. With a bean factory, a bean definition reader can be used
multiple times to read definitions from each filein turn.

Generaly, the Spring team prefers the above approach, since it keeps container configuration files unaware of
the fact that they are being combined with others. An alternate approach is to use one or more occurrences of
the <i nport /> element to load bean definitions from another file (or files). Any <i nport/> elements must be
placed before <bean/ > elements in the file doing the importing. Let's look at a sample:

<beans>
<inmport resource="services.xm"/>

<i nport resource="resources/ nessageSource. xm "/ >
<i nmport resource="/resources/themeSource. xm"/>

<bean i d="beanl" class="..."/>
<bean i d="bean2" class="..."/>
</ beans>

In this example, externa bean definitions are being loaded from 3 files, servi ces. xm , messageSour ce. xni ,
and t hemeSour ce. xm . All location paths are considered relative to the definition file doing the importing, so
servi ces. xm in this case must be in the same directory or classpath location as the file doing the importing,
while messageSource. xm and t hemeSour ce. xni must be in aresources location below the location of the
importing file. As you can see, aleading slash is actually ignored, but given that these are considered relative
paths, it is probably better form not to use the dlash at al.

The contents of the files being imported must be fully valid XML bean definition files according to the Schema

or DTD, including the top level <beans/ > element.

3.2.3. The beans

As mentioned previously, a Spring 10C container manages one or more beans. These beans are created using
the instructions defined in the configuration metadata that has been supplied to the container (typically in the
form of XML <bean/ > definitions).

Within the container itself, these bean definitions are represented as BeanDef i ni ti on objects, which contain
(among other information) the following metadata:

» a package-qualified class name: this is normally the actual implementation class of the bean being defined.
However, if the bean is to be instantiated by invoking a st ati ¢ factory method instead of using a normal

Spring Framework (2.0.6) 31

The 1oC container

constructor, thiswill actually be the class name of the factory class.

« bean behaviora configuration elements, which state how the bean should behave in the container (prototype

or singleton, autowiring mode, initialization and destruction callbacks, and so forth).

e constructor arguments and property values to set in the newly created bean. An example would be the
number of connections to use in a bean that manages a connection pool (either specified as a property or as a
constructor argument), or the pool size limit.

« other beans which are needed for the bean to do itswork, that is collaborators (also called dependencies).

The concepts listed above directly trandate to a set of properties that each bean definition consists of. Some of

these properties are listed below, along with alink to further documentation about each of them.

Table 3.1. The bean definition

Feature

class

name

scope

constructor arguments

properties

autowiring mode

dependency checking mode

Explained in...

Section 3.2.3.2, “Instantiating beans’

Section 3.2.3.1, “Naming beans’

Section 3.4, “Bean scopes’

Section 3.3.1, “Injecting dependencies”

Section 3.3.1, “Injecting dependencies’

Section 3.3.6, “ Autowiring collaborators”

Section 3.3.7, “Checking for dependencies’

lazy-initialization mode

initialization method

Section 3.3.5, “Lazily-instantiated beans”

Section 3.5.1, “Lifecycle interfaces”

destruction method

Section 3.5.1, “Lifecycle interfaces”

Besides bean definitions which contain information on how to create a specific bean, certain BeanFactory
implementations also permit the registration of existing objects that have been created outside the factory (by
user code). The Def aul tLi st abl eBeanFactory class supports this through the regi sterSingleton(..)

method. Typica applications solely work with beans defined through metadata bean definitions, though.

3.2.3.1. Naming beans

Bean naming conventions

Spring Framework (2.0.6)

32

The 1oC container

The convention (at least amongst the Spring development team) is to use the standard Java convention for
instance field names when naming beans. That is, bean names start with a lowercase letter, and are
camel-cased from then on. Examples of such names would be (without quotes) ' account Manager ',
"account Servi ce','userDao','loginController', eC.

Adopting a consistent way of naming your beans will go a long way towards making your configuration
easier to read and understand; adopting such naming standards is not hard to do, and if you are using
Spring AOP it can pay off handsomely when it comes to applying advice to a set of beans related by
name.

Every bean has one or more ids (also called identifiers, or names; these terms refer to the same thing). Theseids
must be unique within the container the bean is hosted in. A bean will ailmost aways have only oneid, but if a
bean has more than one id, the extra ones can essentially be considered aliases.

When using XML-based configuration metadata, you use the 'id' or ' nane' attributes to specify the bean
identifier(s). The 'id" attribute allows you to specify exactly one id, and as it is a real XML element 1D
attribute, the XML parser is able to do some extra validation when other elements reference the id; as such, it is
the preferred way to specify a bean id. However, the XML specification does limit the characters which are
legal in XML IDs. This is usually not a constraint, but if you have a need to use one of these special XML
characters, or want to introduce other aliases to the bean, you may also or instead specify one or more bean ids,
separated by acomma (,), semicolon (;), or whitespacein the* name' attribute.

Please note that you are not required to supply a name for a bean. If no name is supplied explicitly, the
container will generate a (unique) name for that bean. The motivations for not supplying a name for a bean will
be discussed later (one use caseisinner beans).

3.2.3.1.1. Aliasing beans

In a bean definition itself, you may supply more than one name for the bean, by using a combination of up to
one name specified viathei d attribute, and any number of other names via the nane attribute. All these names
can be considered equivalent aliases to the same bean, and are useful for some situations, such as allowing each
component used in an application to refer to a common dependency using a bean name that is specific to that
component itself.

Having to specify all aliases when the bean is actually defined is not always adequate however. It is sometimes
desirable to introduce an dias for a bean which is defined elsewhere. In XML-based configuration metadata
this may be accomplished viathe use of the standalone <al i as/ > element. For example:

<alias nanme="fromNane" alias="toNane"/>

In this case, a bean in the same container which is named ' fromNane' , may also after the use of this alias
definition, bereferred to as' t oNane' .

As a concrete example, consider the case where component A defines a DataSource bean called
componentA-dataSource, in its XML fragment. Component B would however like to refer to the DataSource as
componentB-dataSource in its XML fragment. And the main application, MyApp, defines its own XML
fragment and assembles the final application context from all three fragments, and would like to refer to the
DataSource as myApp-dataSource. This scenario can be easily handled by adding to the MyApp XML
fragment the following standal one aliases:

<al i as nanme="conponent A- dat aSour ce" al i as="conponent B- dat aSour ce"/ >
<al i as nane="conponent A- dat aSour ce" al i as="nyApp-dat aSource" />

Spring Framework (2.0.6) 33

The 1oC container

Now each component and the main app can refer to the dataSource via a name that is unique and guaranteed
not to clash with any other definition (effectively there is a namespace), yet they refer to the same bean.

3.2.3.2. Instantiating beans

Inner class names

If for whatever reason you want to configure a bean definition for astati c inner class, you have to use
the binary name of the inner class.

For example, if you have a class called Foo in the com exanpl e package, and this Foo class has astati ¢
inner class caled Bar , the value of the' cl ass' attribute on a bean definition would be...

com exanpl e. Foo$Bar

Notice the use of the $ character in the name to separate the inner class name from the outer class name.

A bean definition can be seen as a recipe for creating one or more actual objects. The container looks at the
recipe for a named bean when asked, and uses the configuration metadata encapsulated by that bean definition
to create (or acquire) an actual object.

If you are using XML-based configuration metadata, you can specify the type (or class) of object that is to be
instantiated using the ' cl ass' attribute of the <bean/> element. This ' cl ass' attribute (which internally
eventually boils down to being a d ass property on a BeanDefi ni ti on instance) is normally mandatory (see
Section 3.2.3.2.3, “Instantiation using an instance factory method” and Section 3.6, “Bean definition
inheritance” for the two exceptions) and is used for one of two purposes. The class property specifies the class
of the bean to be constructed in the much more common case where the container itself directly creates the
bean by calling its constructor reflectively (somewhat equivalent to Java code using the 'new' operator). In the
less common case where the container invokes a st at i ¢, factory method on a class to create the bean, the class
property specifies the actual class containing the st ati ¢ factory method that is to be invoked to create the
object (the type of the object returned from the invocation of the st at i ¢ factory method may be the same class
or another class entirely, it doesn't matter).

3.2.3.2.1. Instantiation using a constructor

When creating a bean using the constructor approach, all normal classes are usable by and compatible with
Spring. That is, the class being created does not need to implement any specific interfaces or be coded in a
specific fashion. Just specifying the bean class should be enough. However, depending on what type of 10C you
are going to use for that specific bean, you may need a default (empty) constructor.

Additionally, the Spring 10C container isn't limited to just managing true JavaBeans, it is also able to manage
virtually any class you want it to manage. Most people using Spring prefer to have actual JavaBeans (having
just a default (no-argument) constructor and appropriate setters and getters modeled after the properties) in the
container, but it is also possible to have more exotic non-bean-style classes in your container. If, for example,
you need to use a legacy connection pool that absolutely does not adhere to the JavaBean specification, Spring
can manage it aswell.

When using XML -based configuration metadata you can specify your bean class like so:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"/ >

<bean name="anot her Exanpl e" cl ass="exanpl es. Exanpl eBeanTwo" / >

Spring Framework (2.0.6) 34

The 1oC container

The mechanism for supplying arguments to the constructor (if required), or setting properties of the object
instance after it has been constructed, will be described shortly.

3.2.3.2.2. Instantiation using a st ati c factory method

When defining a bean which is to be created using a static factory method, along with the cl ass attribute which
specifies the class containing the st at i ¢ factory method, another attribute named f act or y- met hod is needed to
specify the name of the factory method itself. Spring expects to be able to call this method (with an optional list
of arguments as described later) and get back alive object, which from that point on is treated as if it had been
created normally viaa constructor. One use for such a bean definitionisto call st ati ¢ factoriesin legacy code.

The following example shows a bean definition which specifies that the bean is to be created by calling a
factory-method. Note that the definition does not specify the type (class) of the returned object, only the class
containing the factory method. In this example, the cr eat el nst ance() method must be a static method.

<bean i d="exanpl eBean"
cl ass="exanpl es. Exanpl eBean2"
factory- met hod="creat el nst ance"/ >

The mechanism for supplying (optional) arguments to the factory method, or setting properties of the object
instance after it has been returned from the factory, will be described shortly.

3.2.3.2.3. Instantiation using an instance factory method

In afashion similar to instantiation via a static factory method, instantiation using an instance factory method is
where the factory method of an existing bean from the container isinvoked to create the new bean.

To use this mechanism, the ' cl ass' attribute must be left empty, and the ' f act ory- bean' attribute must
specify the name of a bean in the current (or parent/ancestor) container that contains the factory method. The
factory method itself must still be set viathe' f act ory- met hod' attribute (as seen in the example below).

<l-- the factory bean, which contains a nmethod call ed createlnstance() -->
<bean i d="nyFact oryBean" class="...">

</ bean>

<l-- the bean to be created via the factory bean -->

<bean i d="exanpl eBean"
fact ory- bean="nyFact or yBean"
factory- met hod="creat el nst ance"/ >

Although the mechanisms for setting bean properties are still to be discussed, one implication of this approach
isthat the factory bean itself can be managed and configured via DI.

3.2.4. Using the container

A BeanFact ory is essentialy nothing more than the interface for an advanced factory capable of maintaining a
registry of different beans and their dependencies. The BeanFact ory enables you to read bean definitions and
access them using the bean factory. When using just the BeanFact ory you would create one and read in some
bean definitionsin the XML format as follows:

InputStreamis = new Fil el nput Strean("beans. xm ");
BeanFactory factory = new Xm BeanFactory(is);

Basically that's all there is to it. Using get Bean(String) you can retrieve instances of your beans; the

Spring Framework (2.0.6) 35

The 1oC container

client-side view of the BeanFact ory is surprisingly simple. The BeanFact or y interface has only six methods for
client code to call:

* bool ean cont ai nsBean(St ri ng): returnstrue if the BeanFact or y contains a bean definition or bean instance
that matches the given name

* (Object getBean(String): returns an instance of the bean registered under the given name. Depending on
how the bean was configured by the BeanFact ory configuration, either a singleton and thus shared instance
or anewly created bean will be returned. A BeansExcept i on will be thrown when either the bean could not
be found (in which case itll be a NoSuchBeanDefi niti onException), Of an exception occurred while
instantiating and preparing the bean

e (bject getBean(String, O ass): returnsa bean, registered under the given name. The bean returned will
be cast to the given Class. If the bean could not be cast, corresponding exceptions will be thrown
(BeanNot Of Requi r edTypeExcept i on). Furthermore, all rules of the get Bean(String) method apply (see
above)

e Class get Type(String nane): returnsthe d ass of the bean with the given name. If no bean corresponding
to the given name could be found, a NoSuchBeanDef i ni ti onExcept i on Will be thrown

* bool ean isSingleton(String): determines whether or not the bean definition or bean instance registered
under the given name is a singleton (bean scopes such as singleton are explained later). If no bean
corresponding to the given name could be found, a NoSuchBeanDef i ni ti onExcept i on Will be thrown

e String[] getAliases(String): Returnthe aiases for the given bean name, if any were defined in the bean
definition

3.3. Dependencies

Y our typical enterprise application is not made up of a single object (or bean in the Spring parlance). Even the
simplest of applications will no doubt have at least a handful of objects that work together to present what the
end-user sees as a coherent application. This next section explains how you go from defining a number of bean
definitions that stand-alone, each to themselves, to a fully realized application where objects work (or
collaborate) together to achieve some goal (usually an application that does what the end-user wants).

3.3.1. Injecting dependencies

The basic principle behind Dependency Injection (D) is that objects define their dependencies (that is to say
the other objects they work with) only through constructor arguments, arguments to a factory method, or
properties which are set on the object instance after it has been constructed or returned from a factory method.
Then, it is the job of the container to actually inject those dependencies when it creates the bean. This is
fundamentally the inverse, hence the name Inversion of Control (10C), of the bean itself being in control of
instantiating or locating its dependencies on its own using direct construction of classes, or something like the
Service Locator pattern.

It becomes evident upon usage that code gets much cleaner when the DI principle is applied, and reaching a
higher grade of decoupling is much easier when beans do not look up their dependencies, but are provided with
them (and additionally do not even know where the dependencies are located and of what actual classthey are).

As touched on in the previous paragraph, DI exists in two major variants, namely Setter Injection, and
Constructor Injection.

Spring Framework (2.0.6) 36

The 1oC container

3.3.1.1. Setter Injection

Setter-based DI is realized by calling setter methods on your beans after invoking a no-argument constructor or
no-argument st at i ¢ factory method to instantiate your bean.

Find below an example of a class that can only be dependency injected using pure setter injection. Note that
there is nothing special about thisclass... it is plain old Java.
public class SinpleMvieLister {

/1 the sinpleMvielister has a dependency on the MvieFinder
private MvieFi nder novi eFi nder;

/'l a setter nethod so that the Spring container can 'inject' a MvieFinder

public void setMyvi eFi nder (Myvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;
}

/'l business logic that actually 'uses' the injected MmvieFinder is omtted...

3.3.1.2. Constructor Injection

Constructor-based DI is realized by invoking a constructor with a number of arguments, each representing a
collaborator. Additionally, calling ast ati ¢ factory method with specific arguments to construct the bean, can
be considered amost equivalent, and the rest of this text will consider arguments to a constructor and
argumentsto ast at i ¢ factory method similarly.

Find below an example of a class that could only be dependency injected using constructor injection. Again,
note that there is nothing special about this class.
public class SinpleMvieLister {

/] the sinpleMvieLister has a dependency on the MvieFinder
private MyvieFi nder novi eFi nder;

// a constructor so that the Spring container can 'inject' a MvieFinder

publ i c Si npl eMovi eLi st er (Movi eFi nder novi eFi nder) {
thi s. movi eFi nder = novi eFi nder;
}

/1 business logic that actually 'uses' the injected MmvieFinder is omtted...

Constructor- or Setter-based DI?

The Spring team generally advocates the usage of setter injection, since a large number of constructor
arguments can get unwieldy, especially when some properties are optional. The presence of setter
methods also makes objects of that class amenable to being re-configured (or re-injected) at some later
time (for management viaJMX MBeansis a particularly compelling use case).

Constructor-injection is favored by some purists though (and with good reason). Supplying al of an
object's dependencies means that that object is never returned to client (calling) code in aless than totally
initialized state. The flipside is that the object becomes |ess amenable to re-configuration (or re-injection).

There is no hard and fast rule here. Use whatever type of DI makes the most sense for a particular class;
sometimes, when dealing with third party classes to which you do not have the source, the choice will
already have been made for you - a legacy class may not expose any setter methods, and so constructor
injection will be the only type of DI available to you.

Spring Framework (2.0.6) 37

The 1oC container

The BeanFact ory supports both of these variants for injecting dependencies into beans it manages. (It in fact
also supports injecting setter-based dependencies after some dependencies have already been supplied via the
constructor approach.) The configuration for the dependencies comes in the form of a BeanDef i ni ti on, which
is used together with propert yEdi t or instances to know how to convert properties from one format to another.
However, most users of Spring will not be dealing with these classes directly (that is programmatically), but
rather with an XML definition file which will be converted internally into instances of these classes, and used
to load an entire Spring |oC container instance.

Bean dependency resolution generaly happens as follows:

1. The BeanFact ory is created and initialized with a configuration which describes al the beans. (Most Spring
USErs use a BeanFact ory Of Appl i cati onCont ext implementation that supports XML format configuration
files.)

2. Each bean has dependencies expressed in the form of properties, constructor arguments, or arguments to the
static-factory method when that is used instead of a normal constructor. These dependencies will be
provided to the bean, when the bean is actually created.

3. Each property or constructor argument is either an actual definition of the value to set, or a reference to
another bean in the container.

4. Each property or constructor argument which is a value must be able to be converted from whatever format
it was specified in, to the actual type of that property or constructor argument. By default Spring can convert
avalue supplied in string format to al built-in types, such asi nt, | ong, St ri ng, bool ean, €tc.

The Spring container validates the configuration of each bean as the container is created, including the
validation that properties which are bean references are actually referring to valid beans. However, the bean
properties themselves are not set until the bean is actually created. For those beans that are singleton-scoped
and set to be pre-instantiated (such as singleton beans in an Appl i cat i onCont ext), creation happens at the time
that the container is created, but otherwise thisis only when the bean is requested. When a bean actually has to
be created, this will potentially cause a graph of other beans to be created, as its dependencies and its
dependencies dependencies (and so on) are created and assigned.

Circular dependencies

If you are using predominantly constructor injection it is possible to write and configure your classes and
beans such that an unresolvable circular dependency scenario is created.

Consider the scenario where you have class A, which requires an instance of class B to be provided via
constructor injection, and class B, which requires an instance of class A to be provided via constructor
injection. If you configure beans for classes A and B to be injected into each other, the Spring 1oC
container will detect this circular reference at runtime, and throw a
BeanCurrent |yl nCreati onExcepti on.

One possible solution to thisissue is to edit the source code of some of your classes to be configured via
setters instead of via constructors. Another solution is not to use constructor injection and stick to setter
injection only.

You can generally trust Spring to do the right thing. It will detect mis-configuration issues, such as references
to non-existent beans and circular dependencies, at container load-time. It will actually set properties and
resolve dependencies as late as possible, which is when the bean is actually created. This means that a Spring
container which has loaded correctly can later generate an exception when you request a bean if there is a

Spring Framework (2.0.6) 38

The 1oC container

problem creating that bean or one of its dependencies. This could happen if the bean throws an exception as a
result of a missing or invalid property, for example. This potentially delayed visibility of some configuration
issues is why Appl i cati onCont ext implementations by default pre-instantiate singleton beans. At the cost of
some upfront time and memory to create these beans before they are actually needed, you find out about
configuration issues when the Appl i cat i onCont ext IS created, not later. If you wish, you can still override this
default behavior and set any of these singleton beans to lazy-initialize (that is not be pre-instantiated).

Finaly, if it is not immediately apparent, it is worth mentioning that when one or more collaborating beans are
being injected into a dependent bean, each collaborating bean is totally configured prior to being passed (via
one of the DI flavors) to the dependent bean. This meansthat if bean A has a dependency on bean B, the Spring
1oC container will totally configure bean B prior to invoking the setter method on bean A; you can read 'totally
configure' to mean that the bean will be instantiated (if not a pre-instantiated singleton), al of its dependencies
will be set, and the relevant lifecycle methods (such as a configured init method or the IntializingBean callback
method) will al be invoked.

3.3.1.3. Some examples

First, an example of using XML-based configuration metadata for setter-based DI. Find below a small part of a
Spring XML configuration file specifying some bean definitions.
<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<l-- setter injection using the nested <ref/> el erent -->
<property name="beanOne"><ref bean="anot her Exanpl eBean"/></ property>

<I-- setter injection using the neater 'ref' attribute -->
<property name="beanTwo" ref="yet Anot her Bean"/ >
<property name="integerProperty" val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {
private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;
public void set BeanOne(Anot her Bean beanOne) {
thi s. beanOne = beanOne
}

public void set BeanTwo(Yet Anot her Bean beanTwo) {
thi s. beanTwo = beanTwo;
}

public void setlntegerProperty(int i) {
this.i =1i;
}

Asyou can see, setters have been declared to match against the properties specified in the XML file.

Now, an example of using constructor-based DI. Find below a snippet from an XML configuration that
specifies constructor arguments, and the corresponding Java class.
<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<l-- constructor injection using the nested <ref/> el ement -->
<constructor-arg><ref bean="anot her Exanpl eBean"/ ></construct or - ar g>

<I-- constructor injection using the neater 'ref' attribute -->
<constructor-arg ref="yet Anot her Bean"/ >

Spring Framework (2.0.6) 39

The 1oC container

<constructor-arg type="int" value="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

publ i ¢ Exanpl eBean(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
thi s. beanOne = anot her Bean;
t hi s. beanTwo = yet Anot her Bean;
this.i =i;

Asyou can see, the constructor arguments specified in the bean definition will be used to passin as arguments
to the constructor of the Exanpl eBean.

Now consider a variant of this where instead of using a constructor, Spring is told to cal a static factory
method to return an instance of the object:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"
factory- met hod="cr eat el nst ance" >
<constructor-arg ref="anot her Exanpl eBean"/ >
<constructor-arg ref="yet Anot her Bean"/ >
<constructor-arg val ue="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

/'l a private constructor
private ExanpleBean(...) {

i

// a static factory nethod; the argunments to this nethod can be
/| considered the dependencies of the bean that is returned,
/'l regardl ess of how those argunents are actually used.
public static Exanpl eBean createl nstance (
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {

Exanpl eBean eb = new Exanpl eBean (...);
// some other operations...
return eb;

Note that arguments to the stati ¢ factory method are supplied via constructor-arg elements, exactly the
same as if a constructor had actually been used. Also, it is important to realize that the type of the class being
returned by the factory method does not have to be of the same type as the class which contains the stati c
factory method, although in this example it is. An instance (non-static) factory method would be used in an
essentially identical fashion (aside from the use of the f act or y- bean attribute instead of the cl ass attribute), so
details will not be discussed here.

3.3.2. Constructor Argument Resolution

Spring Framework (2.0.6) 40

The 1oC container

Constructor argument resolution matching occurs using the argument's type. If there is no potential for
ambiguity in the constructor arguments of a bean definition, then the order in which the constructor arguments
are defined in a bean definition is the order in which those arguments will be supplied to the appropriate
constructor when it is being instantiated. Consider the following class:

package X.y;
public class Foo {

public Foo(Bar bar, Baz baz) {
...
}

There is no potential for ambiguity here (assuming of course that Bar and Baz classes are not related in an
inheritance hierarchy). Thus the following configuration will work just fine, and you do not need to specify the
constructor argument indexes and / or types explicitly.

<beans>
<bean name="foo0" class="x.y.Foo">
<constructor - ar g>
<bean cl ass="x.y.Bar"/>
</ constructor-arg>
<constructor-arg>
<bean cl ass="x.y.Baz"/>
</ constructor-arg>
</ bean>
</ beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with the
preceding example). When a simple type is used, such as <val ue>t rue<val ue>, Spring cannot determine the
type of the value, and so cannot match by type without help. Consider the following class:

package exanpl es;

public class Exanpl eBean {

/1 No. of years to the calculate the Utinate Answer
private int years;

/1l The Answer to Life, the Universe, and Everything
private String ultimteAnswer;

public Exanpl eBean(int years, String ultimteAnswer) {

this.years = years
this.ul ti mateAnswer = ul ti mat eAnswer;

3.3.2.1. Constructor Argument Type Matching

The above scenario can use type matching with simple types by explicitly specifying the type of the constructor
argument using the' t ype' attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int" val ue="7500000"/>
<constructor-arg type="java.lang. String" val ue="42"/>
</ bean>

3.3.2.2. Constructor Argument Index

Constructor arguments can have their index specified explicitly by use of thei ndex attribute. For example:

Spring Framework (2.0.6) 41

The 1oC container

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg index="0" val ue="7500000"/>
<constructor-arg index="1" val ue="42"/>

</ bean>

As well as solving the ambiguity problem of multiple simple values, specifying an index also solves the
problem of ambiguity where a constructor may have two arguments of the same type. Note that the index is 0
based.

3.3.3. Bean properties and constructor arguments detailed

As mentioned in the previous section, bean properties and constructor arguments can be defined as either
references to other managed beans (collaborators), or values defined inline. Spring's XML-based configuration
metadata supports a number of sub-element types within its <property/> and <const ruct or - ar g/ > €elements
for just this purpose.

3.3.3.1. Straight values (primitives, Stri ngs, etc.)

The <val ue/ > element specifies a property or constructor argument as a human-readable string representation.
As mentioned previously, JavaBeans Pr oper t yEdi t or s are used to convert these string valuesfrom a st ri ng to
the actual type of the property or argument.

<bean i d="nyDat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose">

<l-- results in a setDriverCassNane(String) call -->
<property nanme="driverd assNane" >
<val ue>com nysql . j dbc. Dri ver </ val ue>
</ property>
<property name="url">
<val ue>j dbc: nysql : / /1 ocal host : 3306/ nydb</ val ue>
</ property>
<property name="user nanme">
<val ue>r oot </ val ue>
</ property>
<property nanme="password">
<val ue>mast er kaol i </ val ue>
</ property>
</ bean>

The <property/ > and <const r uct or - ar g/ > elements aso support the use of the ' val ue' attribute, which can
lead to much more succinct configuration. When using the * val ue' attribute, the above bean definition reads
like so:

<bean i d="nmnyDat aSour ce" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- met hod="cl ose">

<I-- results in a setDriverdassNane(String) call -->
<property name="driverC assNane" val ue="com nysql . jdbc. Driver"/>
<property name="url" val ue="j dbc: mysql :// | ocal host: 3306/ nydb"/ >
<property name="user nane" val ue="root"/>
<property name="password" val ue="nasterkaoli"/>

</ bean>

The Spring team generaly prefer the attribute style over the use of nested <val ue/ > elements. If you are
reading this reference manual straight through from top to bottom (wow!) then we are getting dightly ahead of
ourselves here, but you can also configureaj ava. util . Properti es instance like so:

<bean i d="mappi ngs" cl ass="org. spri ngframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">

<I-- typed as a java.util.Properties -->
<property name="properties">
<val ue>

Spring Framework (2.0.6) 42

The 1oC container

jdbc. driver.cl assName=com nysql . j dbc. Dri ver
jdbc. url =j dbc: nysql : //1 ocal host : 3306/ nydb
</ val ue>
</ property>
</ bean>

Can you see what is happening? The Spring container is converting the text inside the <val ue/ > element into a
java.util.Properties instance using the JavaBeans Propert Edi t or mechanism. This is a nice shortcut, and
is one of afew places where the Spring team do favor the use of the nested <val ue/ > element over the' val ue'
attribute style.

3.3.3.1.1. The i dref element

The idref element is simply an error-proof way to pass the id of another bean in the container (to a
<const ruct or - ar g/ > Or <pr oper t y/ > element).

<bean id="t heTarget Bean" class="..."/>

<bean i d="t heC i entBean" class="...">
<property name="t ar get Nane">
<i dref bean="theTar get Bean" />
</ property>
</ bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean id="t heTarget Bean" class="..."/>

<bean id="client" class="...">
<property name="t ar get Nane">
<val ue>t heTar get Bean</ val ue>
</ property>
</ bean>

The main reason the first form is preferable to the second is that using the i dref tag allows the container to
validate at deployment time that the referenced, named bean actually exists. In the second variation, no
validation is performed on the value that is passed to the ' t ar get Nane' property of the ' client' bean. Any
typo will only be discovered (with most likely fatal results) when the* cli ent* bean is actually instantiated. If
the ' client' bean is a prototype bean, this typo (and the resulting exception) may only be discovered long
after the container is actually deployed.

Additionally, if the bean being referred to is in the same XML unit, and the bean name is the bean id, the
"l ocal ' attribute may be used, which allows the XML parser itself to validate the bean id even earlier, at XML
document parse time.

<property name="t ar get Nane">
<l-- a bean with an id of 'theTargetBean' mnust exist,
otherwi se an XM. exception will be thrown -->
<idref |ocal ="theTarget Bean"/>
</ property>

By way of an example, one common place (at least in pre-Spring 2.0 configuration) where the <idref/> element
brings value is in the configuration of AOP interceptors in a ProxyFact or yBean bean definition. If you use
<idref/> elements when specifying the interceptor names, there is no chance of inadvertently misspelling an
interceptor id.

3.3.3.2. References to other beans (collaborators)

Theref element isthe final element allowed inside a <const ruct or - ar g/ > Or <pr oper t y/ > definition element.

Spring Framework (2.0.6) 43

The 1oC container

It isused to set the value of the specified property to be areference to another bean managed by the container (a
collaborator). As mentioned in a previous section, the referred-to bean is considered to be a dependency of the
bean who's property is being set, and will be initialized on demand as needed (if it is a singleton bean it may
have aready been initialized by the container) before the property is set. All references are ultimately just a
reference to another object, but there are 3 variations on how the id/name of the other object may be specified,
which determines how scoping and validation is handled.

Specifying the target bean by using the bean attribute of the <r ef / > tag is the most general form, and will alow
creating a reference to any bean in the same container (whether or not in the same XML file), or parent
container. The value of the ' bean' attribute may be the same as either the ' i d' attribute of the target bean, or
one of thevaluesin the' nane' attribute of the target bean.

<ref bean="soneBean"/>

Specifying the target bean by using thel ocal attribute leverages the ability of the XML parser to validate XML
id references within the same file. The value of the | ocal attribute must be the same as the i d attribute of the
target bean. The XML parser will issue an error if no matching element is found in the samefile. As such, using
the local variant is the best choice (in order to know about errors are early as possible) if the target bean isin
the same XML file.

<ref |ocal ="soneBean"/>

Specifying the target bean by using the' parent* attribute allows a reference to be created to a bean which isin
a parent container of the current container. The value of the ' parent' attribute may be the same as either the
"id attribute of the target bean, or one of the values in the ' nane' attribute of the target bean, and the target
bean must be in a parent container to the current one. The main use of this bean reference variant is when you
have a hierarchy of containers and you want to wrap an existing bean in a parent container with some sort of
proxy which will have the same name as the parent bean.

<I-- in the parent context -->

<bean i d="account Servi ce" cl ass="com foo. Si npl eAccount Servi ce">
<I-- insert dependencies as required as here -->

</ bean>

<l-- in the child (descendant) context -->

<bean i d="account Service" <-- notice that the nane of this bean is the sane as the nane of the 'parent’
cl ass="org. spri ngf ramewor k. aop. f r amewor k. Pr oxyFact or yBean" >
<property nanme="target">
<ref parent="accountService"/> <-- notice how we refer to the parent bean
</ property>
<l-- insert other configuration and dependenci es as required as here -->
</ bean>

3.3.3.3. Inner beans

A <bean/ > element inside the <property/> or <constructor-arg/> elements is used to define a so-called
inner bean. An inner bean definition does not need to have any id or name defined, and it is best not to even
specify any id or name value because the id or name value simply will be ignored by the container.

<bean id="outer" class="...">
<l-- instead of using a reference to a target bean, sinply define the target bean inline -->
<property name="target">
<bean cl ass="com nyconpany. Person"> <!-- this is the inner bean -->

<property nanme="nanme" val ue="Fi ona Apple"/>
<property nanme="age" val ue="25"/>
</ bean>
</ property>
</ bean>

Spring Framework (2.0.6) 44

bean

The 1oC container

Note that in the specific case of inner beans, the ' scope' flagand any 'id' or' nane' attribute are effectively
ignored. Inner beans are always anonymous and they are always scoped as prototypes. Please al'so note that it is
not possible to inject inner beans into collaborating beans other than the enclosing bean.

3.3.3.4. Collections

The<list/>, <set/>, <map/ >, and <pr ops/ > elements allow properties and arguments of the Java Col | ecti on
typeLi st, Set, Map, and Properti es, respectively, to be defined and set.

<bean i d="nor eConpl exObj ect" cl ass="exanpl e. Conpl ex(hj ect " >

<l-- results in a set Adm nEmail s(java.util.Properties) call -->
<property name="adm nEnail s">
<pr ops>

<prop key="adm ni strator">adm ni strator @oneconpany. or g</ prop>
<prop key="support">support @oneconpany. or g</ pr op>
<prop key="devel opnent " >devel opnent @oneconpany. or g</ pr op>

</ props>
</ property>
<l-- results in a setSoneList(java.util.List) call -->
<property nanme="soneList">

<list>

<value>a list elenent foll owed by a reference</val ue>
<ref bean="nyDat aSource" />

</list>
</ property>
<l-- results in a set SoneMap(java.util.mvap) call -->
<property name="sonmeMap">
<map>
<entry>
<key>
<val ue>yup an entry</val ue>
</ key>
<val ue>j ust some string</val ue>
</entry>
<entry>
<key>
<val ue>yup a ref</val ue>
</ key>
<ref bean="nyDat aSource" />
</entry>
</ map>
</ property>
<l-- results in a setSoneSet (java.util.Set) call -->
<property name="sonmeSet">
<set >

<val ue>j ust some string</val ue>
<ref bean="nyDat aSource" />
</set>
</ property>
</ bean>

Note that the value of a map key or value, or a set value, can also again be any of the following elements:

bean | ref | idref | list | set | map | props | value | nul

3.3.3.4.1. Collection merging

Asof Spring 2.0, the container also supports the merging of collections. This allows an application developer to
define a parent-style <li st/ >, <map/ >, <set/> Of <props/> element, and have child-style <l i st/ >, <map/ >,
<set/> Of <props/ > elements inherit and override values from the parent collection; that is to say the child
collection's values will be the result obtained from the merging of the elements of the parent and child
collections, with the child's collection elements overriding values specified in the parent collection.

Please note that this section on merging makes use of the parent-child bean mechanism. This concept has not
yet been introduced, so readers unfamiliar with the concept of parent and child bean definitions may wish to

Spring Framework (2.0.6) 45

The 1oC container

read the relevant section before continuing.

Find below an example of the collection merging feature:

<beans>
<bean i d="parent" abstract="true" cl ass="exanpl e. Conpl ex(hj ect">
<property nanme="adm nEmail s">
<pr ops>
<prop key="adm ni strator">adm ni strat or @oneconpany. conx/ pr op>
<prop key="support">support @oneconpany. conx/ pr op>
</ props>
</ property>
</ bean>
<bean i d="chil d" parent="parent">
<property name="adm nEnail s">
<l-- the nerge is specified on the *child* collection definition -->
<props nerge="true">
<prop key="sal es">sal es@oneconpany. conk/ pr op>
<prop key="support">support @oneconpany. co. uk</ prop>
</ props>
</ property>
</ bean>
<beans>

Notice the use of the mer ge=t r ue attribute on the <pr ops/ > element of the adni nEmai | s property of the child
bean definition. When the chi | d bean is actualy resolved and instantiated by the container, the resulting
instance will have an adni nEnmi | s Properti es collection that contains the result of the merging of the child's
adni nEmai | s collection with the parent's adni nEmai | s collection.

admi ni strat or =adm ni strat or @onmeconpany. com
sal es=sal es@onmeconpany. com
support =suppor t @oneconpany. co. uk

Notice how the child Properties collection's value set will have inherited all the property elements from the
parent <props/ >. Notice aso how the child's value for the support value overrides the value in the parent
collection.

This merging behavior applies similarly to the <li st/ >, <map/ >, and <set /> collection types. In the specific
case of the <Ii st/ > element, the semantics associated with the Li st collection type, that is the notion of an
or der ed collection of values, is maintained; the parent's values will precede all of the child list's values. In the
case of the map, Set, and Properties collection types, there is no notion of ordering and hence no ordering
semantics are in effect for the collection types that underlie the associated Map, Set and Properties
implementation types used internally by the container.

Finally, some minor notes about the merging support are in order; you cannot merge different collection types
(e.g. amvap and aLi st), and if you do attempt to do so an appropriate Except i on Will be thrown; and in case it
is not immediately obvious, the ' nerge' attribute must be specified on the lower level, inherited, child
definition; specifying the ' ner ge' attribute on a parent collection definition is redundant and will not result in
the desired merging; and (lastly), please note that this merging feature is only available in Spring 2.0 (and later
versions).

3.3.3.4.2. Strongly-typed collection (Java5+ only)

If you are one of the lucky few to be using Javab (Tiger), you will be aware that it is possible to have strongly
typed collections. That is, it is possible to declare a Col | ecti on type such that it can only contain String
elements (for example). If you are using Spring to dependency inject a strongly-typed Col | ecti on into a bean,
you can take advantage of Spring's type-conversion support such that the elements of your strongly-typed
Col | ecti on instances will be converted to the appropriate type prior to being added to the Col | ecti on.

public class Foo {

Spring Framework (2.0.6) 46

The 1oC container

private Map<String, Float> accounts;

public void set Accounts(Map<String, Float> accounts) {
this.accounts = accounts;
}

<beans>
<bean i d="fo0" class="x.y.Foo">
<property name="accounts">
<n’Hp>
<entry key="one" val ue="9.99"/>
<entry key="two" val ue="2.75"/>
<entry key="six" val ue="3.99"/>
</ map>
</ property>
</ bean>
</ beans>

When the ' accounts' property of the ' foo' bean is being prepared for injection, the generics information
about the element type of the strongly-typed Map<String, Float> is actualy available via reflection, and so
Spring's type conversion infrastructure will actually recognize the various value elements as being of type
Fl oat and sothe string values' 9.99', *2.75',and' 3. 99" will be converted into an actual Fl oat type.

3.3.3.5. NulI s

The <nul I / > element is used to handle nul I values. Spring treats empty arguments for properties and the like
as empty Strings. The following XML-based configuration metadata snippet results in the email property
being set to the empty St ri ng value (")

<bean cl ass="Exanpl eBean" >
<property nanme="emai |l " ><val ue/ ></ property>
</ bean>

Thisis equivaent to the following Java code: exanpl eBean. set Emai | ("") . The special <nul | > element may be
used to indicate anul | value. For example:

<bean cl ass="Exanpl eBean" >
<property name="email"><nul|/></property>
</ bean>

The above configuration is equivalent to the following Java code: exanpl eBean. set Emai | (nul 1) .

3.3.3.6. Shortcuts and other convenience options for XML-based configuration metadata

The configuration metadata shown so far is a tad verbose. That is why there are several options available for
you to limit the amount of XML you have to write to configure your components. The first is a shortcut to
define values and references to other beans as part of a <propert y/ > definition. The second is slightly different
format of specifying properties alltogether.

3.3.3.6.1. XML-based configuration metadata shortcuts

The <property/ >, <const ruct or - ar g/ >, and <ent ry/ > elements all support a' val ue' attribute which may be
used instead of embedding afull <val ue/ > element. Therefore, the following:

<property name="nmnyProperty">
<val ue>hel | o</ val ue>
</ property>

Spring Framework (2.0.6) a7

The 1oC container

<constructor - ar g>
<val ue>hel | o</ val ue>
</ constructor-arg>

<entry key="nyKey">
<val ue>hel | o</ val ue>
</entry>

are equivaent to:

<property name="nyProperty" val ue="hello"/>

<constructor-arg val ue="hell 0"/>

<entry key="nyKey" val ue="hell 0"/ >

The <property/ > and <const ruct or - ar g/ > elements support a similar shortcut ' ref* attribute which may be
used instead of afull nested <r ef / > element. Therefore, the following:

<property name="mnyProperty">
<ref bean="nyBean">
</ property>

<constructor - ar g>
<ref bean="nyBean">
</ constructor-arg>

.. are equivalent to:

<property name="nyProperty" ref="nyBean"/>

<constructor-arg ref="nyBean"/>

Note however that the shortcut form is equivalent to a<ref bean="xxx"> element; there is no shortcut for <r ef
I ocal ="xxx">. To enforce astrict local reference, you must use the long form.

Finally, the entry element allows a shortcut form to specify the key and/or value of the map, in the form of the
"key' /' key-ref' and'val ue' /' value-ref' attributes. Therefore, the following:

<entry>

<key>
<ref bean="nyKeyBean" />

</ key>
<ref bean="nyVal ueBean" />

</entry>

is equivalent to:

<entry key-ref="nyKeyBean" val ue-ref="nyVal ueBean"/ >

Again, the shortcut form is equivalent to a <ref bean="xxx"> element; there is no shortcut for <ref
| ocal =" xxx">.

Spring Framework (2.0.6) 48

The 1oC container

3.3.3.6.2. The p-namespace and how to use it to configure properties

The second option you have to limit the amount of XML you have to write to configure your components is to
use the specia "p-namespace”. Spring 2.0 and later features support for extensible configuration formats using
namespaces. Those namespaces are al based on an XML Schema definition. In fact, the beans configuration
format that you've been reading about is defined in an XML Schema document.

One special namespace is not defined in an XSD file, and only exists in the core of Spring itself. The so-called
p-namespace doesn't need a schema definition and is an alternative way of configuring your properties
differently than the way you have seen so far. Instead of using nested property elements, using the
p-namespace you can use attributes as part of the bean element that describe your property values. The values
of the attributes will be taken as the values for your properties.

The following two XML snippets boil down to the same thing in the end: the first is using the format you're
familiar with (the pr oper t y elements) whereas the second example is using the p-namespace

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springframework. org/ scherma/ p"
xsi : schemaLocati on="http://ww:. spri ngframewor k. or g/ schema/ beans http://ww:. spri ngframewor k. or g/ schema/ beans/

<bean nane="cl assi ¢" cl ass="com nyconpany. Exanpl eBean" >
<property nanme="email" val ue="foo@ar.com >
</ bean>

<bean name="p- nanespace"
cl ass="com nyconpany. Exanpl eBean"
p: enai | ="f oo@ar . cont'/ >
</ beans>

Asyou can see, we are including an attribute from the p-namespace called email in the bean definition. Thisis
telling Spring that it should include a property declaration. As previously mentioned, the p-namespace doesn't
have a schema definition, so the name of the attribute can be set to whatever name your property has.

This next example includes two more bean definitions that both have a reference to another bean:

<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww.springframework. org/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans http://ww. spri ngframewor k. or g/ schena/ beans/

<bean nane="j ohn-cl assi ¢c" cl ass="com nyconpany. Person" >
<property name="nanme" val ue="John Doe"/>
<property name="spouse" ref="jane"/>

</ bean>

<bean name="j ohn- noder n"
cl ass="com nyconpany. Per son"
p: name="John Doe"
p: spouse-ref="jane"/>

<bean name="j ane" cl ass="com nyconpany. Person">
<property name="nanme" val ue="Jane Doe"/>
</ bean>
</ beans>

As you can see, this example doesn't only include a property value using the p-namespace, but also uses a
specia format to declare property references. Whereas the first bean definition uses <pr operty nanme="spouse"
ref="jane"/> to create a reference from bean john to bean jane, the second bean definition uses
p: spouse-ref ="j ane" as an attribute to do the exact same thing. In this case spouse is the property name
whereasthe - ref part tells Spring thisis not a value but a bean reference.

Spring Framework (2.0.6) 49

The 1oC container

Note

Note that we recommend you to choose carefully which approach you are going to use in your
project. Y ou should also communicate this to your team members so you won't end up with XML
documents using all three approaches at the same time. This will prevent people from not
understanding the application because of different ways of configuring it, and will add to the
consistency of your codebase. Also note that this functionality is only available as of Spring 2.0.

3.3.3.7. Compound property names

Compound or nested property names are perfectly legal when setting bean properties, as long as all components
of the path except the final property name are not null. For example, in this bean definition:

<bean id="foo0" class="foo.Bar">
<property name="fred. bob. sarmy" val ue="123" />
</ bean>

The f oo bean has afred property which has a bob property, which has a sammy property, and that final samy
property is being set to the value 123. In order for this to work, the fred property of f oo, and the bob property
of fred must both be non-null after the bean is constructed, or aNul | Poi nt er Except i on Will be thrown.

3.3.4. Using depends- on

For most situations, the fact that a bean is a dependency of another is expressed by the fact that one bean is set
as a property of another. Thisis typically accomplished with the <ref / > element in XML-based configuration
metadata. For the relatively infrequent situations where dependencies between beans are less direct (for
example, when a dtatic initializer in a class needs to be triggered, such as database driver registration), the
" depends- on' attribute may be used to explicitly force one or more beans to be initialized before the bean
using this element is initialized. Find below an example of using the * depends- on' attribute to express a
dependency on a single bean.

<bean i d="beanOne" cl ass="Exanpl eBean" depends-on="manager"/>

<bean i d="nmanager" cl ass="ManagerBean" />

If you need to express a dependency on multiple beans, you can supply alist of bean names as the value of the
' depends-on' atribute, with commas, whitespace and semi-colons al valid delimiters, like so:

<bean i d="beanOne" cl ass="Exanpl eBean" depends- on="nmanager, account Dao" >
<property name="manager" ref="manager" />
</ bean>

<bean i d="manager" cl ass="ManagerBean" />
<bean i d="account Dao" cl ass="x.y.j dbc.JdbcAccount Dao" />

Note

The 'depends-on' attribute and property is used not only to specify an initidization time
dependency, but also to specify the corresponding destroy time dependency (in the case of
singleton beans only). Dependant beans that are defined in the 'depends-on' attribute will be
destroyed first prior to the relevant bean itself being destroyed. This thus alows you to control
shutdown order too.

Spring Framework (2.0.6) 50

The 1oC container

3.3.5. Lazily-instantiated beans

The default behavior for ApplicationContext implementations is to eagerly pre-instantiate all singl et on
beans at startup. Pre-instantiation means that an Appl i cati onCont ext Will eagerly create and configure all of
its singleton beans as part of itsinitialization process. Generally thisis a good thing, because it means that any
errors in the configuration or in the surrounding environment will be discovered immediately (as opposed to
possibly hours or even days down the line).

However, there are times when this behavior is not what is wanted. If you do not want a singleton bean to be
pre-instantiated when using an Appl i cati onCont ext, you can selectively control this by marking a bean
definition as lazy-initiaized. A lazily-initialized bean indicates to the 10C container whether or not a bean
instance should be created at startup or when it isfirst requested.

When configuring beans via XML, this lazy loading is controlled by the' | azy-init* attribute on the <bean/ >
element; for example:

<bean i d="lazy" cl ass="com f 0o. Expensi veToCr eat eBean" |azy-init="true"/>

<bean nane="not.| azy" cl ass="com f 0o. Anot her Bean"/ >

When the above configuration is consumed by an Appl i cati onCont ext, the bean named ' | azy* will not be
eagerly pre-instantiated when the Appl i cati onCont ext is starting up, whereas the ' not . I azy' bean will be
eagerly pre-instantiated.

One thing to understand about lazy-initialization is that even though a bean definition may be marked up as
being lazy-initialized, if the lazy-initidized bean is the dependency of a singleton bean that is not
lazy-initialized, when the Appl i cati onCont ext IS eagerly pre-instantiating the singleton, it will have to satisfy
all of the singletons dependencies, one of which will be the lazy-initialized bean! So don't be confused if the
loC container creates one of the beans that you have explicitly configured as lazy-initialized at startup; all that
means is that the lazy-initialized bean is being injected into a non-lazy-initialized singleton bean el sewhere.

It is also possible to control lazy-initialization at the container level by using the ' def aul t-1azy-init"
attribute on the <beans/ > element; for example:

<beans default-lazy-init="true">
<!-- no beans will be pre-instantiated... -->
</ beans>

3.3.6. Autowiring collaborators

The Spring container is able to autowire relationships between collaborating beans. This means that it is
possible to automatically let Spring resolve collaborators (other beans) for your bean by inspecting the contents
of the BeanFact ory. The autowiring functionality has five modes. Autowiring is specified per bean and can
thus be enabled for some beans, while other beans will not be autowired. Using autowiring, it is possible to
reduce or eliminate the need to specify properties or constructor arguments, thus saving a significant amount of
typing. 2 When usi ng XML-based configuration metadata, the autowire mode for a bean definition is specified
by using the aut owi r e attribute of the <bean/ > element. The following values are allowed:

Table 3.2. Autowiring modes

Mode Explanation

no
2

Spring Framework (2.0.6) 51

The 1oC container

Mode Explanation

No autowiring at all. Bean references must be defined via a ref element. This is the
default, and changing this is discouraged for larger deployments, since explicitly
specifying collaborators gives greater control and clarity. To some extent, it is a form of
documentation about the structure of a system.

byName
Autowiring by property name. This option will inspect the container and look for a bean

named exactly the same as the property which needs to be autowired. For example, if you
have a bean definition which is set to autowire by name, and it contains a master property
(that is, it has a setMaster(..) method), Spring will look for a bean definition named
nast er, and use it to set the property.

byType
Allows a property to be autowired if there is exactly one bean of the property type in the

container. If there is more than one, afatal exception is thrown, and this indicates that you
may not use byType autowiring for that bean. If there are no matching beans, nothing
happens, the property is not set. If this is not desirable, setting the
dependency- check="obj ect s" attribute value specifies that an error should be thrown in
this case.

constructor
Thisis analogous to byType, but applies to constructor arguments. If there isn't exactly one

bean of the constructor argument type in the container, afatal error is raised.

autodetect
Chooses constructor or byType through introspection of the bean class. If a default

constructor is found, the byType mode will be applied.

Note that explicit dependenciesin property and const ruct or - ar g Settings al ways override autowiring. Please
also note that it is not currently possible to autowire so-called simple properties such as primitives, Stri ngs,
and d asses (and arrays of such simple properties).(This is by-design and should be considered a feature.)
Autowire behavior can be combined with dependency checking, which will be performed after all autowiring
has been completed.

It is important to understand the various advantages and disadvantages of autowiring. Some advantages of
autowiring include:

¢ Autowiring can significantly reduce the volume of configuration required. However, mechanisms such as the
use of a bean template (discussed elsewherein this chapter) are a'so vauable in this regard.

» Autowiring can cause configuration to keep itself up to date as your objects evolve. For example, if you need
to add an additional dependency to a class, that dependency can be satisfied automatically without the need
to modify configuration. Thus there may be a strong case for autowiring during development, without ruling
out the option of switching to explicit wiring when the code base becomes more stable.

Some disadvantages of autowiring:

« Autowiring is more magical than explicit wiring. Although, as noted in the above table, Spring is careful to
avoid guessing in case of ambiguity which might have unexpected results, the relationships between your
Spring-managed objects are no longer documented explicitly.

« Wiring information may not be available to tools that may generate documentation from a Spring container.

Spring Framework (2.0.6) 52

The 1oC container

e Autowiring by type will only work when there is a single bean definition of the type specified by the setter
method or constructor argument. Y ou need to use explicit wiring if thereis any potential ambiguity.

There is no wrong or right answer in all cases. A degree of consistency across a project is best though; for
example, if autowiring is not used in general, it might be confusing to developers to use it just to wire one or
two bean definitions.

3.3.6.1. Excluding a bean from being available for autowiring

Y ou can aso (on a per-bean basis) totally exclude a bean from being an autowire candidate. When configuring
beans using Spring's XML format, the ' aut owi r e- candi dat e’ attribute of the <bean/ > element can be set to
"fal se'; this has the effect of making the container totally exclude that specific bean definition from being
available to the autowiring infrastructure.

This can be useful when you have a bean that you absolutely never ever want to have injected into other beans
via autowiring. It does not mean that the excluded bean cannot itself be configured using autowiring... it can, it
israther that it itself will not be considered as a candidate for autowiring other beans.

3.3.7. Checking for dependencies

The Spring 10C container also has the ability to check for the existence of unresolved dependencies of a bean
deployed into the container. These are JavaBeans properties of the bean, which do not have actual values set for
them in the bean definition, or alternately provided automatically by the autowiring feature.

This feature is sometimes useful when you want to ensure that all properties (or al properties of a certain type)
are set on a bean. Of course, in many cases a bean class will have default values for many properties, or some
properties do not apply to all usage scenarios, so this feature is of limited use. Dependency checking can also
be enabled and disabled per bean, just as with the autowiring functionality. The default is to not check
dependencies. Dependency checking can be handled in several different modes. When using XML-based
configuration metadata, this is specified viathe ' dependency- check' attribute in a bean definition, which may
have the following values.

Table 3.3. Dependency checking modes

Mode Explanation

none
No dependency checking. Properties of the bean which have no value specified for them

are simply not set.

simple
Dependency checking is performed for primitive types and collections (everything except
collaborators).

object
Dependency checking is performed for collaborators only.

al

Dependency checking is done for collaborators, primitive types and collections.

If you are using Java 5 (Tiger) and thus have access to source level annotations, you may find the section
entitled Section 25.3.1, “ @Requi r ed” to be of interest.

Spring Framework (2.0.6) 53

The 1oC container

3.3.8. Method Injection

For most application scenarios, the majority of the beans in the container will be singletons. When a singleton
bean needs to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with
another non-singleton bean, the typical and common approach of handling this dependency by defining one
bean to be a property of the other is quite adequate. There is a problem when the bean lifecycles are different.
Consider a singleton bean A which needs to use a non-singleton (prototype) bean B, perhaps on each method
invocation on A. The container will only create the singleton bean A once, and thus only get the opportunity to
set the properties once. There is no opportunity for the container to provide bean A with anew instance of bean
B every time oneis needed.

One solution to thisissue is to forgo some inversion of control. Bean A can be made aware of the container by
implementing the BeanFact oryAwar e interface, and use programmatic means to ask the container via a
getBean("B") cal for (a typicaly new) bean B instance every time it needs it. Find below an admittedly
somewhat contrived example of this approach:

/'l a class that uses a stateful Command-style class to perform sone processing
package fiona. appl e;

/'l lots of Spring-APlI inports

i mport org. springframewor k. beans. BeansExcepti on

i mport org.springframework. beans. fact ory. BeanFact ory;

i mport org. springframework. beans. fact ory. BeanFact or yAwar e;

public class ConmandManager inplenments BeanFactoryAware {
private BeanFactory beanFactory;

public Object process(Map commandState) {
/1 grab a new instance of the appropriate Conmand
Command conmand = creat eCommand() ;
// set the state on the (hopefully brand new) Command i nstance
comand. set St at e(commandSt at e) ;
return conmand. execute();

}

/'l the command returned here could be an inplenmentation that executes asynchronously, or whatever
protect ed Command creat eCommand() {

return (Comand) this. beanFactory. get Bean("conmmand"); // notice the Spring APl dependency
}

public void setBeanFactory(BeanFactory beanFactory) throws BeansException {
t hi s. beanFactory = beanFactory;
}

}

The above example is generaly is not a desirable solution since the business code is then aware of and coupled
to the Spring Framework. Method Injection, a somewhat advanced feature of the Spring 10C container, allows
this use case to be handled in a clean fashion.

3.3.8.1. Lookup method injection

Isn't this Method Injection...

. somewhat like Tapestry 4.0's pages, where folks wrote abstract properties that Tapestry would
override at runtime with implementations that did stuff? It sure is (well, kinda).

Y ou can read more about the motivation for Method Injection in this blog entry.

L ookup method injection refersto the ability of the container to override methods on container managed beans,

Spring Framework (2.0.6) 54

http://blog.springframework.com/rod/?p=1

The 1oC container

to return the result of looking up another named bean in the container. The lookup will typically be of a
prototype bean as in the scenario described above. The Spring Framework implements this method injection by
dynamically generating a subclass overriding the method, using bytecode generation viathe CGLIB library.

So if you look at the code from previous code snippet (the ConmmandManager class), the Spring container is going
to dynamically override the implementation of the cr eat eCommand() method. Your CommandManager class is
not going to have any Spring dependencies, as can be seen in this reworked example below:

package fiona. appl e;
// no nmore Spring inports!
public abstract class CommandManager {

public Onject process(Object commandState) {
/1 grab a new instance of the appropriate comand interface
Command command = creat eConmmand() ;
/'l set the state on the (hopefully brand new) Command i nstance
comand. set St at e(commandSt at e) ;
return command. execute();

}

// okay... but where is the inplenentati on of this nmethod?
protected abstract Command creat eCommand();

}
In the client class containing the method to be injected (the CommandManager in this case), the method that is to
be 'injected’ must have a signature of the following form:

<public| protected> [abstract] <return-type> theMet hodNane(no-argunents);
If the method is abstract, the dynamically-generated subclass will implement the method. Otherwise, the

dynamically-generated subclass will override the concrete method defined in the original class. Let's ook at an
example:

<l-- a stateful bean deployed as a prototype (non-singleton) -->

<bean i d="command" cl ass="fi ona. appl e. AsyncConmand" scope="pr ot ot ype">
<I'-- inject dependencies here as required -->

</ bean>

<I'-- conmandProcessor USEeS stateful CommandHel per -->

<bean i d="commandManager" cl ass="fi ona. appl e. CoomandManager " >
<l ookup- met hod nane="creat eCormand" bean="command"/ >
</ bean>

The bean identified as commandManager will call its own method cr eat eCommand() whenever it needs a new
instance of the command bean. It is important to note that the person deploying the beans must be careful to
deploy the command bean as a prototype (if that is actually what is needed). If it is deployed as a singleton, the
same instance of the conmand bean will be returned each time!

Please be aware that in order for this dynamic subclassing to work, you will need to have the CGLIB jar(s) on
your classpath. Additionally, the class that the Spring container is going to subclass cannot be fi nal , and the
method that is being overridden cannot be fi nal either. Also, testing a class that has an abst r act method can
be somewhat odd in that you will have to subclass the class yourself and supply a stub implementation of the
abst ract method. Finally, objects that have been the target of method injection cannot be serialized.

Tip

Ta
The interested reader may aso find the ServicelLocatorFactoryBean (in the
org. spri ngfranewor k. beans. fact ory. confi g package) to be of use; the approach is similar to
that of the nj ect Fact or yCr eat i ngFact or yBean, but it allows you to specify your own lookup

Spring Framework (2.0.6) 55

The 1oC container

interface as opposed to having to use a Spring-specific lookup interface such as the
Qbj ect Fact ory. Consult the (copious) Javadocs for the Servi celLocat or Fact or yBean for a full
treatment of this alternative approach (that does reduce the coupling to Spring).

3.3.8.2. Arbitrary method replacement

A less commonly useful form of method injection than Lookup Method Injection is the ability to replace
arbitrary methods in a managed bean with another method implementation. Users may safely skip the rest of
this section (which describes this somewhat advanced feature), until this functionality is actually needed.

When using XML-based configuration metadata, the repl aced- met hod element may be used to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with a method
computeV alue, which we want to override:

public class MyVal ueCal cul ator {

public String conmputeValue(String input) {
/'l sonme real code...

}

/1 sone other nethods...

A class implementing the or g. spri ngf ramewor k. beans. f act ory. support. Met hodRepl acer interface provides
the new method definition.

/** meant to be used to override the existing conputeval ue(String)
i mpl enentation in MVal ueCal cul at or
*/
public class Repl acement Conput eVal ue i npl ements Met hodRepl acer {

public oject reinplement(Object o, Method m Object[] args) throws Throwable {
// get the input value, work with it, and return a conputed result
String input = (String) args[O0];

return ...;

The bean definition to deploy the original class and specify the method override would look like this:

<bean i d="nyVal ueCal cul at or class="x.y.z. MyVal ueCal cul at or" >
<l-- arbitrary nethod repl acenent -->
<repl aced- net hod nanme="conput eVal ue" repl acer ="r epl acenent Conput eVal ue" >
<arg-type>String</arg-type>
</ repl aced- net hod>
</ bean>

<bean i d="repl acenent Conput eVal ue" cl ass="a. b. c. Repl acenent Conput eVal ue"/ >

One or more contained <ar g- t ype/ > elements within the <r epl aced- met hod/ > element may be used to indicate
the method signature of the method being overridden. Note that the signature for the arguments is actually only
needed in the case that the method is actually overloaded and there are multiple variants within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name. For example,
all the following would match j ava. | ang. Stri ng.

java.lang. String
String
Str

Spring Framework (2.0.6) 56

The 1oC container

Since the number of arguments is often enough to distinguish between each possible choice, this shortcut can
save alot of typing, by allowing you to type just the shortest string that will match an argument type.

3.4. Bean scopes

When you create a bean definition what you are actually creating is arecipe for creating actual instances of the
class defined by that bean definition. The idea that a bean definition is a recipe is important, because it means
that, just like a class, you can potentially have many object instances created from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into an
object that is created from a particular bean definition, but also the scope of the objects created from a
particular bean definition. This approach is very powerful and gives you the flexibility to choose the scope of
the objects you create through configuration instead of having to 'bake in' the scope of an object at the Java
class level. Beans can be defined to be deployed in one of a number of scopes: out of the box, the Spring
Framework supports exactly five scopes (of which three are available only if you are using a web-aware
Appl i cat i onCont ext).

The scopes supported out of the box are listed bel ow:

Table 3.4. Bean scopes

Scope Description

singleton Scopes a single bean definition to a single object
instance per Spring 10C container.

prototype Scopes a single bean definition to any number of
object instances.

request Scopes a single bean definition to the lifecycle of a
single HTTP request; that is each and every HTTP
request will have its own instance of a bean created
off the back of a single bean definition. Only valid in
the context of a web-aware Spring
Appl i cati onCont ext .

session Scopes a single bean definition to the lifecycle of a
HTTP sSession. Only valid in the context of a
web-aware Spring Appl i cat i onCont ext .

global session Scopes a single bean definition to the lifecycle of a
global HTTP Session. Typically only valid when
used in a portlet context. Only valid in the context of
aweb-aware Spring Appl i cat i onCont ext .

3.4.1. The singleton scope

Spring Framework (2.0.6) 57

The 1oC container

When a bean is a singleton, only one shared instance of the bean will be managed, and al requests for beans
with an id or ids matching that bean definition will result in that one specific bean instance being returned by
the Spring container.

To put it another way, when you define a bean definition and it is scoped as a singleton, then the Spring 10C
container will create exactly one instance of the object defined by that bean definition. This single instance will
be stored in a cache of such singleton beans, and all subsequent requests and references for that named bean
will result in the cached object being returned.

Only one instance is ever created...

<bean id="accountDao" zlass="..." />

... and this same shared instance is injected into each collaborating object

Please be aware that Spring's concept of a singleton bean is quite different from the Singleton pattern as defined
in the seminal Gang of Four (GoF) patterns book. The GoF Singleton hardcodes the scope of an object such
that one and only one instance of a particular class will ever be created per d assLoader . The scope of the
Spring singleton is best described as per container and per bean. This means that if you define one bean for a
particular class in a single Spring container, then the Spring container will create one and only one instance of
the class defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as
asingleton in XML, you would write configuration like so:

<bean i d="account Servi ce" cl ass="com f 0o. Def aul t Account Servi ce"/ >

<I-- the followi ng is equival ent, though redundant (singleton scope is the default); using spring-beans-2.0.dtd -->
<bean i d="account Servi ce" class="com fo0o. Def aul t Account Servi ce" scope="singl eton"/>

<l-- the following is equivalent and preserved for backward conpatibility in spring-beans.dtd -->
<bean i d="account Servi ce" cl ass="com foo. Def aul t Account Servi ce" singleton="true"/>

3.4.2. The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance every
time a request for that specific bean is made (that is, it is injected into another bean or it is requested via a
programmatic get Bean() method call on the container). As arule of thumb, you should use the prototype scope
for al beansthat are stateful, while the singleton scope should be used for stateless beans.

The following diagram illustrates the Spring prototype scope. Please note that a DAO would not typically be
configured as a prototype, since a typical DAO would not hold any conversational state; it was just easier for
this author to reuse the core of the singleton diagram.

Spring Framework (2.0.6) 58

The 1oC container

A brand new bean instance is created...

O

<bean id="accountDac" class="..."
scope="prototype" />

... each and every time the prototype is referenced by collaborating beans

To define a bean as a prototype in XML, you would write configuration like so:

<l'-- using spring-beans-2.0.dtd -->
<bean i d="account Servi ce" cl ass="com f o0o. Def aul t Account Servi ce" scope="prototype"/>

<l-- the following is equivalent and preserved for backward conpatibility in spring-beans.dtd -->
<bean i d="account Servi ce" cl ass="com fo0o0. Def aul t Account Servi ce" singleton="fal se"/>

There is one quite important thing to be aware of when deploying a bean in the prototype scope, in that the
lifecycle of the bean changes dlightly. Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, decorates and otherwise assembles a prototype object, hands it to the client
and then has no further knowledge of that prototype instance. This means that while initialization lifecycle
callback methods will be called on all objects regardliess of scope, in the case of prototypes, any configured
destruction lifecycle callbacks will not be called. It is the responsibility of the client code to clean up prototype
scoped objects and release any expensive resources that the prototype bean(s) are holding onto. (One possible
way to get the Spring container to release resources used by singleton-scoped beans is through the use of a
custom bean post processor which would hold a reference to the beans that need to be cleaned up.)

In some respects, you can think of the Spring containers role when talking about a prototype-scoped bean as
somewhat of areplacement for the Java' new operator. All lifecycle aspects past that point have to be handled
by the client. (The lifecycle of a bean in the Spring container is further described in the section entitled
Section 3.5.1, “Lifecycle interfaces’.)

3.4.3. Singleton beans with prototype-bean dependencies

When using singleton-scoped beans that have dependencies on beans that are scoped as prototypes, please be
aware that dependencies are resolved at instantiation time. This means that if you dependency inject a
prototype-scoped bean into a singleton-scoped bean, a brand new prototype bean will be instantiated and then
dependency injected into the singleton bean... but that is all. That exact same prototype instance will be the sole
instance that is ever supplied to the singleton-scoped bean, which isfineif that is what you want.

However, sometimes what you actually want is for the singleton-scoped bean to be able to acquire a brand new
instance of the prototype-scoped bean again and again and again at runtime. In that case it is no use just
dependency injecting a prototype-scoped bean into your singleton bean, because as explained above, that only
happens once when the Spring container is instantiating the singleton bean and resolving and injecting its

Spring Framework (2.0.6) 59

The 1oC container

dependencies. If you are in the scenario where you need to get a brand new instance of a (prototype) bean again
and again and again at runtime, you are referred to the section entitled Section 3.3.8, “Method Injection”

Backwar ds compatibility note: specifying thelifecycle scopein XML

A If you are referencing the ' spri ng- beans. dtd' DTD in abean definition file(s), and you are being
explicit about the lifecycle scope of your beans you must use the "si ngl et on" attribute to express
the lifecycle scope (remembering that the singleton lifecycle scope is the default). If you are
referencing the ' spri ng- beans-2.0.dtd" DTD or the Spring 2.0 XSD schema, then you will need
to use the "scope" attribute (because the "si ngl et on™ attribute was removed from the definition of
the new DTD and XSD filesin favour of the "scope” attribute).

To be totally clear about this, this means that if you use the "si ngl et on" attribute in an XML bean
definition then you must be referencing the ' spri ng- beans. dtd' DTD in that file. If you are using
the "scope™ attribute then you must be referencing either the' spri ng- beans-2. 0. dtd' DTD or the
" spring- beans-2.0.xsd" XSD in that file.

3.4.4. The other scopes

The other scopes, namely r equest, sessi on, and gl obal sessi on are for use only in web-based applications
(and can be used irrespective of which particular web application framework you are using, if indeed any). In
the interest of keeping related concepts together in one place in the reference documentation, these scopes are
described here.

Note

“a
The scopes that are described in the following paragraphs are only available if you are using a
web-aware Spring Appl i cati onCont ext implementation (such as Xm WebAppl i cat i onCont ext). If
you try using these next scopes with regular Spring 10C containers such as the Xl BeanFact ory Of
C assPat hXni Appl i cati onCont ext, you will get an 111 egal Stat eExcepti on complaining about
an unknown bean scope.

3.4.4.1. Initial web configuration

In order to effect the scoping of beans at the request, session, and gl obal session levels (web-scoped
beans), some minor initial configuration is required before you can set about defining your bean definitions.
Please note that this extra setup is not required if you just want to use the 'standard’ scopes (namely singleton
and prototype).

Now as things stand, there are a couple of ways to effect this initial setup depending on your particular servlet
environment. If you are using a Servlet 2.4+ web container, then you need only add the following
Cont ext Li st ener to the XML declarationsin your web application's' web. xni ' file.
<web- app>
<| I st ener >
<l i st ener-cl ass>org. spri ngframewor k. web. cont ext . request . Request Cont ext Li st ener </ | i st ener-cl ass>

</listener>

</ web- app>

If you are using an older web container (before Servlet 2.4), you will need to use a (provided)
javax. servl et. Fil ter implementation. Find below a snippet of XML configuration that has to be included in

Spring Framework (2.0.6) 60

The 1oC container

the' web. xni * file of your web application if you want to have access to web-scoped beans (the filter settings
depend on the surrounding web application configuration and so you will have to change them as appropriate).

<web- app>

<filter>
<filter-name>requestContextFilter</filter-nanme>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-mppi ng>
<filter-name>requestContextFilter</filter-nanme>
<url-pattern>/*</url-pattern>
</filter-mappi ng>

<lﬁéb-app>

That's it. The Request Cont ext Li st ener and Request Cont ext Fi | t er classes both do exactly the same thing,
namely bind the HTTP request object to the Thread that is servicing that request. This makes beans that are
request- and session-scoped available further down the call chain.

3.4.4.2. The request scope

Consider the following bean definition:

<bean i d="I| ogi nAction" class="com fo0o. Logi nActi on" scope="request"/>

With the above bean definition in place, the Spring container will create a brand new instance of the
Logi nActi on bean using the ' | ogi nActi on' bean definition for each and every HTTP request. That is, the
"1 ogi nActi on' bean will be effectively scoped at the HTTP request level. Y ou can change or dirty the internal
state of the instance that is created as much as you want, safe in the knowledge that other requests that are also
using instances created off the back of the same ' 1 ogi nAction' bean definition will not be seeing these
changes in state since they are particular to an individual request. When the request is finished processing, the
bean that is scoped to the request will be discarded.

3.4.4.3. The session scope

Consider the following bean definition:

<bean i d="userPreferences" class="com foo. User Preferences" scope="session"/>

With the above bean definition in place, the Spring container will create a brand new instance of the
User Pref erences bean using the ' userPreferences' bean definition for the lifetime of a single HTTP
Sessi on. In other words, the ' user Pref erences' bean will be effectively scoped at the HTTP Sessi on level.
Just liker equest - scoped beans, you can change the internal state of the instance that is created as much as you
want, safe in the knowledge that other HTTP Sessi on instances that are also using instances created off the
back of the same * user Pref erences' bean definition will not be seeing these changes in state since they are
particular to an individual HTTP sessi on. When the HTTP Sessi on is eventually discarded, the bean that is
scoped to that particular HTTP Sessi on will also be discarded.

3.4.4.4. The global session scope

Consider the following bean definition:

<bean id="userPreferences" class="com foo. UserPreferences" scope="gl obal Sessi on"/ >

Thegl obal sessi on scopeissimilar to the standard HTTP Sessi on scope (described immediately above), and

Spring Framework (2.0.6) 61

The 1oC container

really only makes sense in the context of portlet-based web applications. The portlet specification defines the
notion of a global sessi on that is shared amongst all of the various portlets that make up a single portlet web
application. Beans defined at the gl obal sessi on scope are scoped (or bound) to the lifetime of the global
portlet Sessi on.

Please note that if you are writing a standard Servlet-based web application and you define one or more beans
as having gl obal sessi on scope, the standard HTTP Sessi on scope will be used, and no error will be raised.

3.4.4.5. Scoped beans as dependencies

Being able to define a bean scoped to a HTTP request or Sessi on (or indeed a custom scope of your own
devising) is all very well, but one of the main value-adds of the Spring 10C container is that it manages not only
the instantiation of your objects (beans), but also the wiring up of collaborators (or dependencies). If you want
to inject a (for example) HTTP request scoped bean into another bean, you will need to inject an AOP proxy in
place of the scoped bean. That is, you need to inject a proxy object that exposes the same public interface as the
scoped object, but that is smart enough to be able to retrieve the real, target object from the relevant scope (for
example aHTTP request) and delegate method calls onto the real object.

Note

s

"8

You do not need to use the <aop: scoped- proxy/ > in conjunction with beans that are scoped as
si ngl et ons Of prot ot ypes. |t isan error to try to create a scoped proxy for a singleton bean (and
the resulting BeanCr eat i onExcept i on Will certainly set you straight in this regard).

Let's ook at the configuration that is required to effect this; the configuration is not hugely complex (it takes
just oneline), but it isimportant to understand the “why” aswell asthe “how” behind it.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"
xsi : schemalLocati on="
http://ww. springframework. or g/ scherma/ beans http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://ww. spri ngframework. or g/ schenma/ aop http://ww. springfranmewor k. or g/ schenma/ aop/ spri ng- aop- 2. 0. xsd" >

<l-- a HITP session-scoped bean exposed as a proxy -->
<bean i d="user Preferences" class="com foo. User Preferences" scope="session">

<l-- this next element effects the proxying of the surroundi ng bean -->
<aop: scoped- pr oxy/ >

</ bean>

<l-- a singleton-scoped bean injected with a proxy to the above bean -->

<bean i d="user Servi ce" class="com foo. Si npl eUser Servi ce">

<I-- a reference to the proxied 'userPreferences’ bean -->
<property name="user Preferences" ref="userPreferences"/>

</ bean>
</ beans>

To create such a proxy, you need only to insert a child <aop: scoped- proxy/ > element into a scoped bean
definition (you may also need the CGLIB library on your classpath so that the container can effect class-based
proxying; you will also need to be using Appendix A, XML Schema-based configuration). So, just why do you
need this <aop: scoped-proxy/> element in the definition of beans scoped at the request, session,
gl obal Sessi on and 'insert your custom scope here' level? The reason is best explained by picking apart the
following bean definition (please note that the following ' user Pref erences' bean definition as it stands is
incomplete):

<bean i d="userPreferences" class="com foo. UserPreferences" scope="session"/>

Spring Framework (2.0.6) 62

The 1oC container

<bean i d="user Manager" cl ass="com f 0oo. User Manager " >
<property nanme="user Preferences" ref="userPreferences"/>
</ bean>

From the above configuration it is evident that the singleton bean ' user Manager' is being injected with a
reference to the HTTP Session-scoped bean 'userPreferences'. The sdient point here is that the
"user Manager' bean isasingleton... it will be instantiated exactly once per container, and its dependencies (in
this case only one, the ' user Preferences' bean) will also only be injected (once!). This means that the
"user Manager' Will (conceptually) only ever operate on the exact same ' user Pref erences' Object, that is the
one that it was originally injected with. This is not what you want when you inject a HTTP Sessi on-scoped
bean as a dependency into a collaborating object (typically). Rather, what we do want is a single
"user Manager' oObject, and then, for the lifetime of a HTTP Session, we want to see and use a
"user Preferences' aobject that is specific to said HTTP Sessi on.

Rather what you need then is to inject some sort of object that exposes the exact same public interface as the
User Pr ef erences class (ideally an object that is a User Pref er ences instance) and that is smart enough to be
able to go off and fetch the real User Pref erences object from whatever underlying scoping mechanism we
have chosen (HTTP request, Sessi on, €tc.). We can then safely inject this proxy object into the* user Manager*
bean, which will be blissfully unaware that the User Pr ef er ences reference that it is holding onto is aproxy. In
the case of this example, when a User Manager instance invokes a method on the dependency-injected
User Pr ef er ences object, it is really invoking a method on the proxy... the proxy will then go off and fetch the
real User Pref erences object from (in this case) the HTTP Sessi on, and delegate the method invocation onto
the retrieved real User Pr ef er ences object.

That is why you need the following, correct and complete, configuration when injecting r equest -, sessi on-,
and gl obal Sessi on- scoped beansinto collaborating objects:

<bean i d="user Preferences" class="com foo. User Preferences" scope="session">
<aop: scoped- pr oxy/ >
</ bean>

<bean id="user Manager" cl ass="com f 0o. User Manager " >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

3.4.4.5.1. Choosing the type of proxy created

By default, when the Spring container is creating a proxy for a bean that is marked up with the
<aop: scoped- pr oxy/ > element, a CGLib-based class proxy will be created. This means that you will need to
have the CGLib library on the classapth for your application.

You can choose to have the Spring container create 'standard' JDK interface-based proxies for such scoped
beans by specifying 'f al se' for the value of the 'proxy-target-cl ass' atribute of the <aop: scoped- proxy/ >
element. Using JDK interface-based proxies does mean that you don't need any additional libraries on your
application's classpath to effect such proxying, but it does mean that the class of the scoped bean must
implement at least one interface, and all of the collaborators into which the scoped bean is injected must be
referencing the bean via one of its interfaces.

<!I'-- Defaul tUserPreferences i npl ements the UserPreferences interface -->

<bean i d="user Preferences" class="com foo. Defaul t User Preferences" scope="session">
<aop: scoped- proxy proxy-target-class="fal se"/>

</ bean>

<bean i d="user Manager" cl ass="com f 0o. User Manager ">
<property name="user Preferences" ref="userPreferences"/>
</ bean>

Spring Framework (2.0.6) 63

The 1oC container

The section entitled Section 6.6, “Proxying mechanisms’ may aso be of some interest with regard to
understanding the nuances of choosing whether class-based or interface-based proxying is right for you.

3.4.5. Custom scopes

As of Spring 2.0, the bean scoping mechanism in Spring is extensible. This means that you are not limited to
just the bean scopes that Spring provides out of the box; you can define your own scopes, or even redefine the
existing scopes (although that last one would probably be considered bad practice - please note that you cannot
override the built-in si ngl et on and pr ot ot ype SCOpPES).

3.4.5.1. Creating your own custom scope

Scopes are defined by the or g. spri ngf ramewor k. beans. f act ory. confi g. Scope interface. Thisisthe interface
that you will need to implement in order to integrate your own custom scope(s) into the Spring container, and is
described in detail below. You may wish to look at the scope implementations that are supplied with the Spring
Framework itself for an idea of how to go about implementing your own. The Scope JavaDoc explains the main
class to implement when you need your own scope in more detail too.

The Scope interface has four methods dealing with getting objects from the scope, removing them from the
scope and allowing them to be 'destroyed' if needed.

The first method should return the object from the underlying scope. The session scope implementation for
example will return the session-scoped bean (and if it does not exist, return a new instance of the bean, after
having bound it to the session for future reference).

bj ect get(String nanme, ObjectFactory objectFactory)
The second method should remove the object from the underlying scope. The session scope implementation for

example, removes the session-scoped bean from the underlying session. The object should be returned (you are
allowed to return null if the object with the specified name wasn't found)

oj ect renpve(String nane)

The third method is used to register callbacks the scope should execute when it is destroyed or when the
specified object in the scope is destroyed. Please refer to the JavaDoc or a Spring scope implementation for
more information on destruction callbacks.

voi d registerDestructionCall back(String name, Runnabl e destructionCal |l back)

The last method deals with obtaining the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session for example, this can be the session identifier.

String get Conversationld()

SPR-2600 - TODO

3.4.5.2. Using a custom scope

After you have written and tested one or more custom Scope implementations, you then need to make the
Spring container aware of your new scope(s). The central method to register a new Scope with the Spring
container is declared on the Confi gurabl eBeanFactory interface (implemented by most of the concrete

Spring Framework (2.0.6) 64

http://www.springframework.org/docs/api/org/springframework/beans/factory/config/Scope.html
http://opensource.atlassian.com/projects/spring/browse/SPR-2600

The 1oC container

BeanFact or y implementations that ship with Spring); this central method is displayed below:

voi d registerScope(String scopeNane, Scope scope);

The first argument to ther egi st er Scope(..) method is the unique hame associated with a scope; examples of
such names in the Spring container itself are ' singleton' and ' prototype' . The second argument to the
regi st er Scope(..) method is an actual instance of the custom Scope implementation that you wish to register
and use.

Let's assume that you have written your own custom Scope implementation, and you have registered it like so:

/1 note: the Threadscope cl ass does not ship with the Spring Framework
Scope cust onScope = new ThreadScope();
beanFact ory. regi st er Scope("thread", scope);

Y ou can then create bean definitions that adhere to the scoping rules of your custom Scope like so:

<bean id="..." class="..." scope="thread"/>

If you have your own custom Scope implementation(s), you are not just limited to only programmatic
registration of the custom scope(s). You can also do the Scope registration declaratively, using the
Cust onScopeConf i gur er class.

The declarative registration of custom Scope implementations using the Cust onScopeConfi gurer class is
shown below:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schema/ aop"
xsi : schemaLocat i on="
htt p: // ww. spri ngfranmewor k. or g/ schena/ beans http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. or g/ schema/ aop http://ww. springframewor k. or g/ schena/ aop/ spri ng-aop- 2. 0. xsd" >

<bean cl ass="org. spri ngframewor k. beans. fact ory. confi g. Cust onScopeConfi gurer">
<property nanme="scopes">
<map>
<entry key="thread">
<bean cl ass="com fo0o0. Thr eadScope"/ >
</entry>
</ map>
</ property>
</ bean>
<bean i d="bar" class="x.y.Bar" scope="thread">
<property name="nanme" val ue="Ri ck"/>
<aop: scoped- pr oxy/ >
</ bean>
<bean i d="fo0" class="x.y.Foo">
<property nanme="bar" ref="bar"/>
</ bean>

</ beans>

3.5. Customizing the nature of a bean

3.5.1. Lifecycle interfaces

The Spring Framework provides several marker interfaces to change the behavior of your bean in the container;

Spring Framework (2.0.6) 65

The 1oC container

they include ! ni tial i zi ngBean and Di sposabl eBean. Implementing these interfaces will result in the container
calling af t er Properti esSet () for the former and destroy() for the latter to allow the bean to perform certain
actions upon initialization and destruction.

Internaly, the Spring Framework uses BeanPost Processor implementations to process any marker interfaces it
can find and call the appropriate methods. If you need custom features or other lifecycle behavior Spring
doesn't offer out-of-the-box, you can implement a BeanPost Processor yourself. More information about this
can be found in the section entitled Section 3.7, “ Container extension points”.

All the different lifecycle marker interfaces are described below. In one of the appendices, you can find
diagram that show how Spring manages beans and how those lifecycle features change the nature of your beans
and how they are managed.

3.5.1.1. Initialization callbacks

Implementing the org. springframework. beans. factory. InitializingBean interface allows a bean to
perform initialization work after all necessary properties on the bean are set by the container. The
I ni tializi ngBean interface specifies exactly one method:

void afterPropertiesSet() throws Exception

Generally, the use of the I ni ti al i zi ngBean interface can be avoided (and is discouraged since it unnecessarily
couples the code to Spring). A bean definition provides support for a generic initialization method to be
specified. In the case of XML-based configuration metadata, this is done using the ' i ni t - met hod' attribute.
For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nethod="init"/>

public cl ass Exanpl eBean {

public void init() {
// do sone initialization work
}

Is exactly the same as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public class Anot her Exanpl eBean i npl ements InitializingBean {

public void afterPropertiesSet() {
// do some initialization work
}

... but does not couple the code to Spring.

3.5.1.2. Destruction callbacks

Implementing the or g. spri ngf ramewor k. beans. f act ory. Di sposabl eBean interface alows a bean to get a
callback when the container containing it is destroyed. The Di sposabl eBean interface specifies one method:

voi d destroy() throws Exception;

Spring Framework (2.0.6) 66

The 1oC container

Generally, the use of the Di sposabl eBean marker interface can be avoided (and is discouraged since it
unnecessarily couples the code to Spring). A bean definition provides support for a generic destroy method to
be specified. When using XML-based configuration metadata this is done via the * dest r oy- net hod' attribute
on the <bean/ >. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy- met hod="cl eanup"/>

public class Exanpl eBean {

public void cleanup() {
/1 do some destruction work (like rel easing pool ed connections)
}

Is exactly the same as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public cl ass Anot her Exanpl eBean i npl enents Di sposabl eBean {

public void destroy() {
/1 do sone destruction work (like rel easi ng pool ed connecti ons)
}

... but does not couple the code to Spring.

3.5.1.2.1. Default initialization & destroy methods

When you are writing initialization and destroy method callbacks that do not use the Spring-specific
I'nitializingBean and Di sposabl eBean callback interfaces, one (in the experience of this author) typically
finds oneself writing methods with names such asinit(),initialize(), di spose(), €c. The names of such
lifecycle callback methods are (hopefully!) standardized across a project so that developers on ateam all use
the same method names and thus ensure some level of consistency.

The Spring container can now be configured to ' | ook’ for named initialization and destroy callback method
names on every bean. This means that you as an application developer can simply write your application
classes, use a convention of having an initialization calback called init (), and then (without having to
configure each and every bean with, in the case of XML-based configuration, an ' init-nethod="init""
attribute) be safe in the knowledge that the Spring 10C container will call that method when the bean is being
created (and in accordance with the standard lifecycle callback contract described previously).

Let'slook at an example to make the use of this feature completely clear. For the sake of the example, let us say
that one of the coding conventions on a project is that all initialization callback methods are to be named
i ni t () and that destroy callback methods are to be called dest roy() . Thisleads to classeslike so...

public class Defaul t Bl ogService inplenents Bl ogService {
private Bl ogDao bl ogDao;

public void setBl ogDao(Bl ogDao bl ogDao) {
t hi s. bl ogDao = bl ogDao;
}

/'l this is (unsurprisingly) the initialization callback method
public void init() {
if (this.blogbDao == null) {
throw new ||| egal St at eExcepti on("The [bl ogDao] property nust be set.");
}

Spring Framework (2.0.6) 67

The 1oC container

<beans defaul t-init-nmethod="init">

<bean i d="bl ogServi ce" class="com f oo. Def aul t Bl ogSer vi ce">
<property nanme="bl ogDao" ref="bl ogbDao" />
</ bean>

</ beans>

Notice the use of the' def aul t-i ni t - met hod' attribute on the top-level <beans/ > element. The presence of this
attribute means that the Spring 10C container will recognize a method called ' init' on beans as being the
initialization method callback, and when a bean is being created and assembled, if the bean's class has such a
method, it will be invoked at the appropriate time.

Destroy method callbacks are configured similarly (in XML that is) using the ' def aul t - dest r oy- net hod'
attribute on the top-level <beans/ > element.

The use of this feature can save you the (small) housekeeping chore of specifying an initialization and destroy
method callback on each and every bean, and it is great for enforcing a consistent naming convention for
initialization and destroy method callbacks (and consistency is something that should always be aimed for).

Consider the case where you have some existing beans where the underlying classes already have initiaization
callback methods that are named at variance with the convention. You can always override the default by
specifying (in XML that is) the method name using the* i ni t - met hod' and ' dest r oy- et hod' attributes on the
<bean/ > element itself.

Finally, please be aware that the Spring container guarantees that a configured initialization callback is called
immediately after a bean has been supplied with all of it's dependencies. This means that the initialization
callback will be called on the raw bean reference, which means that any AOP interceptors or suchlike that will
ultimately be applied to the bean will not yet bein place. A target bean isfully created first, then an AOP proxy
(for example) with its interceptor chain is applied. Note that, if the target bean and the proxy are defined
separately, your code can even interact to the raw target bean, bypassing the proxy. Hence, it would be very
inconsistent to apply the interceptors to the init method, since that would couple the lifecycle of the target bean
with its proxy/interceptors, and |eave strange semantics when talking to the raw target bean directly.

3.5.1.2.2. Shutting down the Spring loC container gracefully in non-web
applications

Note

"
This next section does not apply to web applications (in case the title of this section did not make
that abundantly clear). Spring's web-based Appl i cati onCont ext implementations already have
code in place to handle shutting down the Spring 10C container gracefully when the relevant web
application is being shutdown.

If you are using Spring's 1oC container in a non-web application environment, for example in a rich client
desktop environment, and you want the container to shutdown gracefully and call the relevant destroy callbacks
on your singleton beans, you will need to register a shutdown hook with the VM. Thisis quite easy to do (see
below), and will ensure that your Spring 10C container shuts down gracefully and that all resources held by
your singletons are released (of course it is still up to you to both configure the destroy callbacks for your
singletons and implement such destroy callbacks correctly).

So to register a shutdown hook that enables the graceful shutdown of the relevant Spring 10C container, you

Spring Framework (2.0.6) 68

The 1oC container

smply need to cal the registerShutdownHook() method that is declared on the
Abstract Appl i cati onCont ext class. To wit...

i nport org. springfranework. cont ext . support. Abstract Appl i cati onCont ext ;
i nport org. springfranework. cont ext. support.C assPat hXm Appl i cati onCont ext ;

public final class Boot {

public static void main(final String[] args) throws Exception {
Abst ract Appl i cati onCont ext ctx
= new Cl assPat hXm Appl i cati onContext(new String []{"beans.xm "});

// add a shutdown hook for the above context...
ct x. regi st er Shut downHook() ;

/] app runs here...

/1 main method exits, hook is called prior to the app shutting down...

3.5.2. Knowing who you are

3.5.2.1. BeanFact or yAwar e

A class which implements the or g. spri ngf r amewor k. beans. f act ory. BeanFact or yAwar e interface is provided
with areference to the BeanFact or y that created it, when it is created by that BeanFact ory.

public interface BeanFactoryAware {

voi d set BeanFact ory(BeanFact ory beanFactory) throws BeansExcepti on;

This allows beans to manipulate the BeanFactory that created them programmatically, through the
BeanFact ory interface, or by casting the reference to a known subclass of this which exposes additional
functionality. Primarily this would consist of programmatic retrieval of other beans. While there are cases when
this capability is useful, it should generally be avoided, since it couples the code to Spring, and does not follow
the Inversion of Control style, where collaborators are provided to beans as properties.

An aternative option that is equivalent in effect to the BeanFact or yAwar e-based approach is to use the
org. spri ngframewor k. beans. fact ory. confi g. Obj ect Fact or yCr eat i ngFact or yBean. (It should be noted that
this approach still does not reduce the coupling to Spring, but it does not violate the central principle of 10C as
much as the BeanFact or yAwar e-based approach.)

The oj ect Fact oryCr eat i ngFact oryBean IS a Fact oryBean implementation that returns a reference to an
object (factory) that can in turn be used to effect a bean lookup. The bj ect Fact or yCr eat i ngFact or yBean
class does itself implement the BeanFact or yAwar e interface; what client beans are actually injected with is an
instance of the aj ect Fact ory interface. This is a Spring-specific interface (and hence there is still no total
decoupling from Spring), but clients can then use the Oj ect Fact or y'S get Obj ect () method to effect the bean
lookup (under the hood the tbj ect Fact or y implementation instance that is returned simply delegates down to a
BeanFactory to actualy lookup a bean by name). All that you need to do is supply the
Qbj ect Fact or yCr eat i ngFact or yBean with the name of the bean that is to be looked up. Let's look at an
example:

package x.y;
public class NewsFeed {

private String news;

Spring Framework (2.0.6) 69

The 1oC container

public void set News(String news) {
this. news = news;

}
public String get News() {
return this.toString() + ": '" + news + "'";
}
}
package X.y;

i mport org.springframework. beans. factory. Qbj ect Factory;
public cl ass NewsFeedManager {
private bjectFactory factory;

public void setFactory(ObjectFactory factory) {
this.factory = factory

}

public void printNews() {
/1 here is where the | ookup is perforned; note that there is no
/'l need to hardcode the name of the bean that is being | ooked up..
NewsFeed news = (NewsFeed) factory.get Qbject();
System out. println(news. get News());

Find below the XML configuration to wire together the above classes wusing the
bj ect Fact or yCr eat i ngFact or yBean approach.

<beans>
<bean i d="newsFeedManager" cl ass="x.y. NewsFeedManager" >
<property name="factory">
<bean

cl ass="org. spri ngf ramewor k. beans. f act ory. confi g. Obj ect Fact or yCr eat i ngFact or yBean" >

<property name="t ar get BeanNane" >
<idref |ocal ="newsFeed" />

</ property>

</ bean>
</ property>
</ bean>
<bean i d="newsFeed" cl ass="x.y. NewsFeed" scope="prototype">
<property name="news" value="... that's fit to print!" />
</ bean>

</ beans>

And here is a small driver program to test the fact that new (prototype) instances of the newsFeed bean are
actually being returned for each call to the injected oj ect Fact ory inside the NewsFeedManager 'S pri nt News()
method.

i mport org.springframework. cont ext. Appl i cati onCont ext;
i nport org. springfranework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
i mport Xx.y.NewsFeedManager ;

public class Main {
public static void main(String[] args) throws Exception {
Appl i cationContext ctx = new C assPat hXm Appli cati onCont ext ("beans. xm ");
NewsFeedManager manager = (NewsFeedManager) ctx. get Bean("newsFeedMVanager");

manager . pri nt News() ;
manager . pri nt News() ;

The output from running the above program will look like so (results will of course vary on your machine).

Spring Framework (2.0.6) 70

The 1oC container

X.y. NewsFeed@?292d26: '... that's fit to print!’
X.y. NewsFeed@329c5: '... that's fit to print!

3.5.2.2. BeanNaneAwar e

If abean implementsthe or g. spri ngf ranewor k. beans. f act ory. BeanNaneAwar e interface and is deployed in a
BeanFact ory, the BeanFact ory will call the bean through this interface to inform the bean of the id it was
deployed under. The callback will be invoked after population of normal bean properties but before an
initialization callback like 1 ni ti al i zi ngBean's after PropertiesSet or a custom init-method.

3.6. Bean definition inheritance

A bean definition potentially contains alarge amount of configuration information, including container specific
information (for example initialization method, static factory method name, and so forth) and constructor
arguments and property values. A child bean definition is a bean definition that inherits configuration data from
a parent definition. It is then able to override some values, or add others, as needed. Using parent and child
bean definitions can potentially save alot of typing. Effectively, thisisaform of templating.

When working with a BeanFactory programmaticaly, child bean definitions are represented by the
Chi | dBeanDef i ni tion class. Most users will never work with them on this level, instead configuring bean
definitions declaratively in something like the Xm BeanFactory. When using XML-based configuration
metadata a child bean definition is indicated simply by using the ' parent' attribute, specifying the parent bean
as the value of this attribute.

<bean i d="inheritedTestBean" abstract="true"
cl ass="org. spri ngf ramewor k. beans. Test Bean" >
<property name="nanme" val ue="parent"/>
<property name="age" val ue="1"/>
</ bean>

<bean id="inheritsWthDifferentC ass"
cl ass="org. spri ngf ramewor k. beans. Deri vedTest Bean"
parent ="inheritedTest Bean" init-nmethod="initialize">

<property name="nanme" val ue="override"/>
<!-- the age property value of 1 will be inherited from parent -->

</ bean>

A child bean definition will use the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, that is it must accept the
parent's property values.

A child bean definition will inherit constructor argument values, property values and method overrides from the
parent, with the option to add new values. If any init-method, destroy-method and/or st ati ¢ factory method
settings are specified, they will override the corresponding parent settings.

The remaining settings will always be taken from the child definition: depends on, autowire mode, dependency
check, singleton, scope, lazy init.

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute. In the case that the parent definition does not specify a class, and so explicitly marking the
parent bean definition asabst ract isrequired:

<bean id="inheritedTest BeanWt hout Cl ass" abstract="true">
<property name="nanme" val ue="parent"/>
<property name="age" val ue="1"/>

Spring Framework (2.0.6) 71

The 1oC container

</ bean>

<bean i d="inheritsWthCd ass" cl ass="org. springfranework. beans. Deri vedTest Bean"
parent ="i nheritedTest BeanWt hout Cl ass" init-nmethod="initialize">
<property name="nanme" val ue="override"/>
<!-- age will inherit the value of 1 fromthe parent bean definition-->
</ bean>

The parent bean cannot get instantiated on its own since it is incomplete, and it is aso explicitly marked as
abstract. When a definition is defined to be abstract like this, it is usable only as a pure template bean
definition that will serve as a parent definition for child definitions. Trying to use such an abst ract parent bean
on its own (by referring to it as a ref property of another bean, or doing an explicit get Bean() call with the
parent bean id), will result in an error. Similarly, the container's internal pr el nst ant i at eSi ngl et ons() method
will completely ignore bean definitions which are defined as abstract.

Note

“a
ApplicationContexts (but not BeanFactories) will by default pre-instantiate all singletons.
Therefore it is important (at least for singleton beans) that if you have a (parent) bean definition
which you intend to use only as a template, and this definition specifies a class, you must make
sure to set the 'abstract’ attribute to 'true’, otherwise the application context will actually (attempt
to) pre-instantiate the abst r act bean.

3.7. Container extension points

The oC component of the Spring Framework has been designed for extension. There is typically no need for
an application developer to subclass any of the various BeanFact ory Or Appli cati onCont ext implementation
classes. The Spring 10C container can be infinitely extended by plugging in implementations of special
integration interfaces. The next few sections are devoted to detailing all of these various integration interfaces.

3.7.1. Customizing beans using BeanPost Processor s

The first extension point that we will look at is the BeanPost Processor interface. This interface defines a
number of callback methods that you as an application developer can implement in order to provide your own
(or override the containers default) instantiation logic, dependency-resolution logic, and so forth. If you want to
do some custom logic after the Spring container has finished instantiating, configuring and otherwise
initializing a bean, you can plug in one or more BeanPost Pr ocessor implementations.

You can configure multiple BeanPost Processors if you wish. You can control the order in which these
BeanPost Processors execute by setting the 'order' property (you can only set this property if the
BeanPost Processor implements the o der ed interface; if you write your own BeanPost Processor you should
consider implementing the O dered interface too); consult the Javadocs for the BeanPost Processor and
O der ed interfaces for more details.

Note

. o | . .
BeanPost Pr ocessor s operate on bean (or object) instances; that is to say, the Spring 10C container
will have instantiated a bean instance for you, and then BeanPost Processors get a chance to do
their stuff.

If you want to change the actual bean definition (that is the recipe that defines the bean), then you
rather need to use a BeanFact oryPost Processor (described below in the section entitled

Spring Framework (2.0.6) 72

The 1oC container

Section 3.7.2, “ Customizing configuration metadata with BeanFact or yPost Pr ocessors”.

Also, BeanPost Processors are scoped per-container. This is only relevant if you are using
container hierarchies. If you define a BeanPost Processor in one container, it will only do its stuff
on the beans in that container. Beans that are defined in another container will not be
post-processed by BeanPost Processor s in another container, even if both containers are part of the
same hierarchy.

The org. springframework. beans. factory. confi g. BeanPost Processor interface consists of exactly two
callback methods. When such a class is registered as a post-processor with the container (see below for how
thisregistration is effected), for each bean instance that is created by the container, the post-processor will get a
callback from the container both before any container initialization methods (such as after PropertiesSet and
any declared init method) are called, and also afterwards. The post-processor is free to do what it wishes with
the bean instance, including ignoring the callback completely. A bean post-processor will typically check for
marker interfaces, or do something such as wrap a bean with a proxy; some of the Spring AOP infrastructure
classes are implemented as bean post-processors and they do this proxy-wrapping logic.

It is important to know that a BeanFactory treats bean post-processors dlightly differently than an
Appl i cati onCont ext. An ApplicationCont ext Will automatically detect any beans which are defined in the
configuration metadata which is supplied to it that implement the BeanPost Processor interface, and register
them as post-processors, to be then called appropriately by the container on bean creation. Nothing else needs
to be done other than deploying the post-processors in a similar fashion to any other bean. On the other hand,
when using a BeanFact ory implementation, bean post-processors explicitly have to be registered, with code
like this:

Conf i gur abl eBeanFactory factory = new Xm BeanFactory(...);

/1 now regi ster any needed BeanPostProcessor instances
MyBeanPost Processor post Processor = new MyBeanPost Processor () ;
fact ory. addBeanPost Processor (post Processor) ;

/1 now start using the factory

This explicit registration step is not convenient, and this is one of the reasons why the various
Appl i cationCont ext implementations are preferred above plain BeanFact ory implementations in the vast
majority of Spring-backed applications, especially when using BeanPost Pr ocessors.

BeanPost Processor s and AOP auto-proxying

A Classes that implement the BeanPost Processor interface are special, and so they are treated
differently by the container. All BeanPost Processors and their directly referenced beans will be
instantiated on startup, as part of the specia startup phase of the Appl i cati onCont ext, then all
those BeanPost Processors Will be registered in a sorted fashion - and applied to all further beans.
Since AOP auto-proxying is implemented as a BeanPost Pr ocessor itself, no BeanPost Processor s
or directly referenced beans are eligible for auto-proxying (and thus will not have aspects 'woven'
into them.

For any such bean, you should see an info log message: “Bean 'foo' is not eligible for getting

processed by all BeanPostProcessors (for example: not eligible for auto-proxying)”.

Find below some examples of how to write, register, and use BeanPost Processors in the context of an
Appl i cati onCont ext .

Spring Framework (2.0.6) 73

The 1oC container

3.7.1.1. Example: Hello World, BeanPost Processor -Style

This first example is hardly compelling, but serves to illustrate basic usage. All we are going to do is code a
custom BeanPost Processor implementation that simply invokes the t oSt ri ng() method of each bean asiit is
created by the container and prints the resulting string to the system console. Yes, it is not hugely useful, but
serves to get the basic concepts across before we move into the second example which is actually useful.

Find below the custom BeanPost Processor implementation class definition:

package scri pting;

i mport org.springframework. beans. factory. confi g. BeanPost Processor ;
i mport org.springframewor k. beans. BeansExcepti on;

public class InstantiationTraci ngBeanPost Processor inplenments BeanPost Processor {

I/l sinply return the instantiated bean as-is

public Onject postProcessBeforelnitialization(Object bean, String beanNanme) throws BeansException {
return bean; // we could potentially return any object reference here...

}

public Onject postProcessAfterlinitialization(Object bean, String beanNanme) throws BeansException {
Systemout.printin("Bean '" + beanNane + "' created : " + bean.toString());
return bean;

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: | ang="http: //wwm. spri ngframework. or g/ schema/ | ang"
Xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. org/ schema/ | ang http://ww. springfranework. org/ schema/ | ang/ spri ng-1 ang-2. 0. xsd" >

<l ang: groovy i d="nessenger"
scri pt - sour ce="cl asspat h: or g/ spri ngf ramewor k/ scri pti ng/ gr oovy/ Messenger. gr oovy" >
<l ang: property nane="nmessage" val ue="Fiona Apple Is Just So Dreany."/>
</ | ang: gr oovy>

<l--
when the above bean (' nmessenger') is instantiated, this custom

BeanPost Processor i npl enentation will output the fact to the system consol e
-->

<bean cl ass="scripting.|nstantiati onTraci ngBeanPost Processor"/>

</ beans>

Notice how the | nst ant i at i onTr aci ngBeanPost Processor issimply defined; it doesn't even have a name, and
because it is a bean it can be dependency injected just like any other bean. (The above configuration also just so
happens to define a bean that is backed by a Groovy script. The Spring 2.0 dynamic language support is
detailed in the chapter entitled Chapter 24, Dynamic language support.)

Find below asmall driver script to exercise the above code and configuration;

i nport org. springfranework. cont ext . Appl i cati onCont ext ;
i nport org. springfranmework. cont ext. support . assPat hXm Appl i cati onCont ext ;
i nport org.springfranework. scripting. Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {
Appl i cationContext ctx = new C assPat hXml Appli cati onCont ext ("scri pting/beans. xm");
Messenger messenger = (Messenger) ctx.getBean("messenger");
System out. printl n(nmessenger);

Spring Framework (2.0.6) 74

The 1oC container

The output of executing the above program will be (something like) this:

Bean ' nessenger' created : org.springframework. scripting.groovy. GoovyMessenger @72961
org. springfranmewor k. scri pting. groovy. G oovyMessenger @72961

3.7.1.2. Example: The Requi r edAnnot at i onBeanPost Pr ocessor

Using marker interfaces or annotations in conjunction with a custom BeanPost Processor implementation is a
common means of extending the Spring 10C container. This next example is a bit of a cop-out, in that you are
directed to the section entitled Section 25.3.1, “@Requi red” which demonstrates the usage of a custom
BeanPost Processor implementation that ships with the Spring distribution which ensures that JavaBean
properties on beans that are marked with an (arbitrary) annotation are actually (configured to be)
dependency-injected with avalue.

3.7.2. Customizing configuration metadata with BeanFact or yPost Processor s

The next extension point that we will look at is the
org. spri ngf ramewor k. beans. factory. confi g. BeanFact or yPost Processor. The semantics of this interface
are similar to the BeanPost Processor, with one major difference. BeanFact or yPost Processors operate on;
that is to say, the Spring 1oC container will allow BeanFact or yPost Processors to read the configuration
metadata and potentially change it before the container has actually instantied any other beans.

Y ou can configure multiple BeanFact or yPost Processor s if you wish. You can control the order in which these
BeanFact or yPost Processors execute by setting the ' order' property (you can only set this property if the
BeanFact or yPost Processor implements the Odered interfface; if you write your own
BeanFact or yPost Processor you should consider implementing the o dered interface too); consult the
Javadocs for the BeanFact or yPost Processor and O der ed interfaces for more details.

Note

e
If you want to change the actual bean instances (the objects that are created from the configuration
metadata), then you rather need to use a BeanPost Processor (described above in the section
entitled Section 3.7.1, “Customizing beans using BeanPost Pr ocessors”.

Also, BeanFact or yPost Processor s are scoped per-container. Thisisonly relevant if you are using
container hierarchies. If you define a BeanFact or yPost Processor in one container, it will only do
its stuff on the bean definitions in that container. Bean definitions in another container will not be
post-processed by BeanFact or yPost Processor s in another container, even if both containers are
part of the same hierarchy.

A bean factory post-processor is executed manually (in the case of aBeanFact or y) or automatically (in the case
of an ApplicationContext) to apply changes of some sort to the configuration metadata that defines a
container. Spring includes a number of pre-existing bean factory post-processors, such as
Pr opert yResourceConfigurer and PropertyPl acehol der Configurer, both described below, and
BeanNaneAut oPr oxyCr eat or , Which is very useful for wrapping other beans transactionally or with any other
kind of proxy, as described later in this manual. The BeanFact or yPost Processor can be used to add custom
property editors.

In aBeanFact ory, the process of applying aBeanFact or yPost Processor ismanual, and will be similar to this:

Xm BeanFactory factory = new Xm BeanFactory(new Fi | eSyst enResour ce("beans. xm ")) ;

/1 bring in some property values froma pProperties file

Spring Framework (2.0.6) 75

The 1oC container

Pr opert yPl acehol der Confi gurer cfg = new PropertyPl acehol der Configurer();
cfg.setlLocation(new Fi | eSyst enResource("j dbc. properties"));

/1 now actually do the repl acenment
cf g. post ProcessBeanFactory(factory);

This explicit registration step is not convenient, and this is one of the reasons why the various
Appl i cationCont ext implementations are preferred above plain BeanFact ory implementations in the vast
majority of Spring-backed applications, especially when using BeanFact or yPost Pr ocessor s.

An ApplicationContext Will detect any beans which are deployed into it which implement the
BeanFact or yPost Processor interface, and automatically use them as bean factory post-processors, at the
appropriate time. Nothing else needs to be done other than deploying these post-processor in a similar fashion
to any other bean.

Note

-

e

Just as in the case of BeanPostProcessors, Yyou typicaly dont want to have
BeanFact or yPost Processor s marked as being lazily-initialized. If they are marked as such, then
the Spring container will never instantiate them, and thus they won't get a chance to apply their
custom logic. If you are using the ' defaul t-1azy-init' attribute on the declaration of your
<beans/ > element, be sure to mark your various BeanFact or yPost Processor bean definitions with
"lazy-init="fal se"".

3.7.2.1. Example: the PropertyPl acehol der Confi gurer

The PropertyPl acehol der Confi gurer is used to externalize property values from a BeanFact ory definition,
into another separate file in the standard Java Properti es format. This is useful to alow the person deploying
an application to customize enviroment-specific properties (for example database URLS, usernames and
passwords), without the complexity or risk of modifying the main XML definition file or files for the container.

Consider the following XML-based configuration metadata fragment, where a Dat aSour ce with placeholder
values is defined. We will configure some properties from an external properti es file, and at runtime, we will
apply a PropertyPl acehol der Configurer to the metadata which will replace some properties of the
datasource:

<bean cl ass="org. spri ngframework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="| ocati ons">
<val ue>cl asspat h: coni f oo/ j dbc. properti es</val ue>
</ property>
</ bean>

<bean i d="dat aSour ce" destroy-nethod="cl ose"
cl ass="or g. apache. commons. dbcp. Basi cDat aSour ce" >
<property nanme="driverC assNane" val ue="${j dbc. dri ver Cl assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property name="usernane" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>

The actual values come from another file in the standard Java Proper ti es format:

j dbc. dri verd assNanme=or g. hsql db. j dbcDri ver
j dbc. url =j dbc: hsql db: hsql : // product i on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

The Propert yPl acehol der Confi gurer doesn't only look for propertiesin the Properti es file you specify, but

Spring Framework (2.0.6) 76

The 1oC container

also checks against the Java Syst em properties if it cannot find a property you are trying to use. This behavior
can be customized by setting the syst enProperti esMode property of the configurer. It has three values, one to
tell the configurer to always override, one to let it never override and one to let it override only if the property
cannot be found in the properties file specified. Please consult the Javadoc for the
Properti esPl acehol der Confi gurer for more information.

Class name substitution

e
The Propert yPl acehol der Confi gurer can be used to substitute class names, which is sometimes
useful when you have to pick a particular implementation class at runtime. For example:

<bean cl ass="org. spri ngfranmework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property nanme="| ocati ons">
<val ue>cl asspat h: coni f oo/ st rat egy. properties</val ue>
</ property>
<property nanme="properties">
<val ue>cust om strat egy. cl ass=com f oo. Def aul t St r at egy</ val ue>
</ property>
</ bean>

<bean id="serviceStrategy" class="${custom strategy.class}"/>

If the class is unable to be resolved at runtime to a valid class, resolution of the the bean will fail
once it is about to be created (which is during the prel nst anti at eSi ngl etons() phase of an
Appl i cati onCont ext for anon-lazy-init bean.)

3.7.2.2. Example: the PropertyQverri deConfi gurer

The PropertyOverrideConfigurer, another bean factory post-processor, is similar to the
Propert yPl acehol der Confi gurer, but in contrast to the latter, the original definitions can have default values
or no values at al for bean properties. If an overriding Properti es file does not have an entry for a certain bean
property, the default context definition is used.

Note that the bean factory definition is not aware of being overridden, so it is not immediately obvious when
looking at the XML definition file that the override configurer is being used. In case that there are multiple
PropertyOverrideConfigurer instances that define different values for the same bean property, the last one
will win (due to the overriding mechanism).

Properties file configuration lines are expected to be in the format:

beanNane. pr opert y=val ue

An example properties file might look like this:

dat aSour ce. dri ver Cl assName=com nysql . j dbc. Dri ver
dat aSour ce. ur |l =j dbc: mysql : mydb

This example file would be usable against a container definition which contains a bean called dataSource,
which has driver and url properties.

Note that compound property names are also supported, as long as every component of the path except the final
property being overridden is already non-null (presumably initialized by the constructors). In this example...

foo. fred. bob. sammy=123

Spring Framework (2.0.6) 77

The 1oC container

... the sammy property of the bob property of the fred property of the f oo bean is being set to the scalar value
123.

3.7.3. Customizing instantiation logic using Fact or yBeans

The org. spri ngfranewor k. beans. f act ory. Fact or yBean interface is to be implemented by objects that are
themsel ves factories.

The Fact oryBean interface is a point of pluggability into the Spring 10C containers instantiation logic. If you
have some complex initiaization code that is better expressed in Java as opposed to a (potentialy) verbose
amount of XML, you can create your own Fact or yBean, write the complex initialization inside that class, and
then plug your custom Fact or yBean into the container.

The Fact or yBean interface provides three methods:

e (Object getvject(): hasto return an instance of the object this factory creates. The instance can possibly
be shared (depending on whether this factory returns singletons or prototypes).

* bool ean isSingl eton(): hastoreturntrue if thisFact or yBean returns singletons, f al se otherwise

e O ass getObj ect Type() : hasto return either the abject type returned by the get Obj ect () method or nul | if
the type isn't known in advance

The Fact or yBean concept and interface is used in a number of places within the Spring Framework; at the time
of writing there are over 50 implementations of the Fact or yBean interface that ship with Spring itself.

Finally, there is sometimes a need to ask a container for an actual Fact or yBean instance itself, not the bean it
produces. This may be achieved by prepending the bean id with * & (sans quotes) when calling the get Bean
method of the BeanFactory (including ApplicationContext). SO for a given Fact oryBean with an id of
nyBean, invoking get Bean("nmyBean") on the container will return the product of the FactoryBean, but
invoking get Bean(" &yBean") Will return the Fact or yBean instance itself.

3.8. The Appl i cati onCont ext

While the beans package provides basic functionality for managing and manipulating beans, often in a
programmatic way, the context package adds ApplicationContext, which enhances BeanFactory
functionality in a more framework-oriented style. Many users will use Appli cati onCont ext in a completely
declarative fashion, not even having to create it manually, but instead relying on support classes such as
Cont ext Loader to automatically start an Appl i cati onCont ext as part of the normal startup process of a J2EE
web-app. Of course, it is till possible to programmatically create an ApplicationContext.

The basis for the context package is the ApplicationContext interface, located in the
org. springframewor k. cont ext package. Deriving from the BeanFactory interface, it provides all the
functionality of BeanFactory. To allow working in a more framework-oriented fashion, using layering and
hierarchical contexts, the context package also provides the following functionality:

e MessageSour ce, providing access to messagesin i18n-style
* Accessto resources, such as URLs and files

» Event propagation to beans implementing the Appl i cati onLi st ener interface

Spring Framework (2.0.6) 78

http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html

The 1oC container

« Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, for example
the web layer of an application

Asthe Appl i cati onCont ext includes al functionality of the BeanFact ory, it is generally recommended that it
be used over the BeanFact ory, except for afew limited situations such as perhaps in an Appl et , where memory
consumption might be critical, and a few extra kilobytes might make a difference. The following sections
describe functionality that Appl i cati onCont ext addsto basic BeanFact ory capabilities.

3.8.1. Internationalization using MessageSour ces

The ApplicationContext interface extends an interface called MessageSource, and therefore provides
messaging (i18n or internationalization) functionality. Together with the Hi er ar chi cal MessageSour ce, Capable
of resolving hierarchical messages, these are the basic interfaces Spring provides to do message resolution.
Let's quickly review the methods defined there:

* String getMessage(String code, Object[] args, String default, Locale |oc): the basic method
used to retrieve a message from the MessageSour ce. When no message is found for the specified locale, the
default message is used. Any arguments passed in are used as replacement values, using the MessageFor mat
functionality provided by the standard library.

e String get Message(String code, Object[] args, Locale |oc): essentially the same as the previous
method, but with one difference: no default message can be specified; if the message cannot be found, a
NoSuchMessageExcept i on isthrown.

e String getMessage(MessageSour ceResol vabl e resol vabl e, Local e |ocale): al properties used in the
methods above are a'so wrapped in a class hamed MessageSour ceResol vabl e, which you can use via this
method.

When an Appl i cati onCont ext gets loaded, it automatically searches for a MessageSour ce bean defined in the
context. The bean has to have the name nessageSour ce. If such a bean is found, all calls to the methods
described above will be delegated to the message source that was found. If no message source was found, the
Appl i cati onCont ext attempts to seeif it has a parent containing a bean with the same name. If so, it uses that
bean as the MessageSour ce. If it can't find any source for messages, an empty St ati cMessageSour ce Will be
instantiated in order to be able to accept calls to the methods defined above.

Spring currently provides two MessageSour ce implementations. These are the Resour ceBundl eMessageSour ce
and the st at i cMessageSour ce. Both implement Nest i ngMessageSour ce in order to do nested messaging. The
St ati cMessageSour ce IS hardly ever used but provides programmatic ways to add messages to the source. The
Resour ceBundl eMessageSour ce iSmoreinteresting and is the one we will provide an example for:

<beans>
<bean i d="nessageSour ce"
cl ass="org. spri ngfranmewor k. cont ext . support. Resour ceBundl eMessageSour ce" >
<property name="basenanes" >
<list>
<val ue>f or mat </ val ue>
<val ue>excepti ons</ val ue>
<val ue>w ndows</ val ue>
</list>
</ property>
</ bean>
</ beans>

This assumes you have three resource bundles defined on your classpath called f or mat, exceptions and
wi ndows. Using the JDK standard way of resolving messages through ResourceBundles, any request to resolve

Spring Framework (2.0.6) 79

The 1oC container

a message will be handled. For the purposes of the example, lets assume the contents of two of the above
resource bundlefiles are...

in 'format. properties’
nessage=Al | i gators rock!

in 'exceptions. properties’
argunent . requi red=The ' {0}' argunment is required.

Some (admittedly trivial) driver code to exercise the messageSource functionality can be found below.
Remember that all Appl i cati onCont ext implementations are also MessageSour ce implementations and so can
be cast to the MessageSour ce interface.

public static void main(String[] args) {
MessageSour ce resources = new Cl assPat hXm Appl i cati onCont ext (" beans. xm ") ;
String nessage = resources. get Message(" nessage", null, "Default", null);
System out . printl n(message) ;

The resulting output from the above program will be...

Al'ligators rock!

So to summarize, the MessageSour ce isdefined in afile called ' beans. xm * (thisfile exists at the root of your
classpath). The ' nessageSour ce' bean definition refers to a number of resource bundles via it's basenanes
property; the three files that are passed in the list to the basenanes property exist as files at the root of your
classpath (and are called format.properties, exceptions.properties, and w ndows. properties

respectively).

Lets look at another example, and this time we will look at passing arguments to the message lookup; these
arguments will be converted into strings and inserted into placeholders in the lookup message. This is perhaps
best explained with an example:

<beans>

<I-- this MessageSource i S being used in a web application -->

<bean i d="nessageSour ce" cl ass="org. spri ngframework. context. support.ResourceBundl eMessageSour ce" >
<property name="baseNane" val ue="WEB-| NF/test-nmessages"/>

</ bean>

<l-- let's inject the above MssageSource into this PQJO -->
<bean i d="exanpl e" cl ass="com fo0o. Exanpl e" >

<property nanme="nessages" ref="nmessageSource"/>
</ bean>

</ beans>

public class Exanple {
private MessageSource nmessages;

public void set Messages(MessageSour ce nmessages) {
t hi s. ressages = nessages;
}

public void execute() {
String nessage = this.nessages. get Message("argunent. required",
new Cbject [] {"userDao"}, "Required", null);
System out . printl n(message) ;

Spring Framework (2.0.6) 80

The 1oC container

The resulting output from the invocation of the execut e() method will be...

The 'userDao' argument is required.

With regard to internationalization (i18n), Spring's various MessageResour ce implementations follow the same
locale resolution and fallback rules as the standard JDK ResourceBundle. In short, and continuing with the
example ' nessageSour ce' defined previoudly, if you want to resolve messages against the British (en-GB)
locale, you would create files called format_en_GB. properties, exceptions_en_GB.properties, and
wi ndows_en_GB. properti es respectively.

Locale resolution is typically going to be managed by the surrounding environment of the application. For the
purpose of this example though, we'll just manually specify the locale that we want to resolve our (British)

messages against.

in 'exceptions_en_GB. properties’
argunent. requi red=Ebagum | ad, the '{0}' argument is required, | say, required.

public static void main(final String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ") ;
String nmessage = resources. get Message("argunent. required”,
new Cbject [] {"userDao"}, "Required", Locale.UK);
System out . printl n(message) ;

The resulting output from the running of the above program will be...

Ebagum | ad, the 'userDao' argument is required, | say, required.

The MessageSour ceAwar e interface can also be used to acquire a reference to any MessageSour ce that has been
defined. Any bean that is defined in an ApplicationContext that implements the MessageSour ceAvar e
interface will be injected with the application context's MessageSour ce when it (the bean) is being created and
configured.

3.8.2. Events

Event handling in the ApplicationContext is provided through the ApplicationEvent class and
Appl i cationLi st ener interface. If a bean which implements the Appl i cati onLi st ener interface is deployed
into the context, every time an Appl i cat i onEvent gets published to the Appl i cat i onCont ext , that bean will be
notified. Essentially, thisis the standard Observer design pattern. Spring provides three standard events:

Table 3.5. Built-in Events

Event Explanation

Cont ext Ref r eshedEvent
Published when the ApplicationContext is initidized or refreshed.

Initialized here means that all beans are loaded, singletons are pre-instantiated
and the Appl i cati onCont ext iSready for use.

Cont ext Cl osedEvent
Published when the ApplicationContext is closed, using the close()

method on the Appl i cat i onCont ext . Closed here means that singleton beans
(only!) are destroyed.

Spring Framework (2.0.6) 81

The 1oC container

Event Explanation

Request Handl edEvent
A web-specific event telling all beans that a HTTP request has been serviced

(this will be published after the request has been finished). Note that this
event is only applicable for web applications using Spring's
Di spat cher Servl et .

Implementing custom events can be done as well. Simply call the publishEvent () method on the
Appl i cati onCont ext , specifying a parameter which is an instance of your custom event class implementing
Appl i cationEvent . Event listeners receive events synchronously. This means the publ i shEvent () method
blocks until all listeners have finished processing the event (it is possible to supply an alternate event
publishing strategy via a ApplicationEvent Mil ticaster implementation). Furthermore, when a listener
receives an event it operates inside the transaction context of the publisher, if atransaction context is available.

Let'slook at an example. First, the Appl i cat i onCont ext :

<bean i d="email er" cl ass="exanpl e. Emai | Bean" >
<property name="bl ackLi st">
<list>
<val ue>bl ack@i st . or g</ val ue>
<val ue>white@i st . or g</ val ue>
<val ue>j ohn@loe. or g</ val ue>
</list>
</ property>
</ bean>

<bean i d="bl ackLi stListener" class="exanpl e. Bl ackLi stNotifier">
<property name="notificati onAddress" val ue="spam@i st.org"/>
</ bean>

Now, let's ook at the actual classes:

public class Email Bean inpl ements Applicati onCont ext Aware {

private List blackList;
private ApplicationContext ctx;

public void setBl ackLi st (List blackList) {
thi s. bl ackLi st = bl ackLi st;
}

public void setApplicationContext (ApplicationContext ctx) {
this.ctx = ctx;

}

public void sendEmail (String address, String text) ({
i f (blackList.contains(address)) {
Bl ackLi st Event evt = new Bl ackLi st Event (address, text);
ct x. publ i shEvent (evt);
return;

}

/1 send email...

public class BlackListNotifier inplenments ApplicationListener {
private String notificati onAddress;
public void setNotificati onAddress(String notificati onAddress) {

this.notificati onAddress = notificati onAddress;
}

public void onApplicati onEvent (ApplicationEvent evt) {
if (evt instanceof Bl ackListEvent) {
/1 notify appropriate person...

Spring Framework (2.0.6) 82

The 1oC container

Of course, this particular example could probably be implemented in better ways (perhaps by using AOP
features), but it should be sufficient to illustrate the basic event mechanism.

3.8.3. Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally familiarize themselves
with Spring's Resour ce abstraction, as described in the chapter entitled Chapter 4, Resour ces.

An application context is a Resour ceLoader , able to be used to load Resour ceS. A Resource IS essentially a
java. net. URL on steroids (in fact, it just wraps and uses a URL where appropriate), which can be used to
obtain low-level resources from almost any location in a transparent fashion, including from the classpath, a
filesystem location, anywhere describable with a standard URL, and some other variations. If the resource
location string is a simple path without any special prefixes, where those resources come from is specific and
appropriate to the actual application context type.

A bean deployed into the application context may implement the special marker interface,
Resour celLoader Awar e, t0 be automatically called back at initialization time with the application context itself
passed in as the Resour ceLoader .

A bean may also expose properties of type Resour ce, to be used to access static resources, and expect that they
will be injected into it like any other properties. The person deploying the bean may specify those Resour ce
properties as simple String paths, and rely on a special JavaBean PropertyEdi tor that is automatically
registered by the context, to convert those text strings to actual Resour ce objects.

The location path or paths supplied to an Appl i cat i onCont ext constructor are actually resource strings, and in
smple form are treated appropriately to the specific context implementation (
C assPat hXm Appl i cati onCont ext treats a simple location path as a classpath location), but may also be used
with special prefixes to force loading of definitions from the classpath or a URL, regardless of the actual
context type.

3.8.4. Convenient Appl i cati onCont ext instantiation for web applications

As opposed to the BeanFact or y, which will often be created programmatically, Appl i cati onCont ext instances
can be created declaratively using for example a ContextLoader. Of course you can aso create
Appl i cationCont ext instances programmatically using one of the ApplicationContext implementations.
First, let's examine the Cont ext Loader interface and its implementations.

The ContextLoader interfface has two implementations. the ContextlLoaderlListener and the
Cont ext Loader Ser vl et . They both have the same functionality but differ in that the listener version cannot be
used in Servlet 2.2 compatible containers. Since the Servlet 2.4 specification, servlet context listeners are
required to execute immediately after the serviet context for the web application has been created and is
available to service the first request (and also when the servlet context is about to be shut down): as such a
servlet context listener isan ideal place to initialize the Spring Appl i cat i onCont ext . It is up to you as to which
one you use, but all things being equal you should probably prefer Cont extLoader Li stener; for more
information on compatibility, have alook at the Javadoc for the Cont ext Loader Ser vl et .

Y ou can register an Appl i cat i onCont ext using the Cont ext Loader Li st ener asfollows:

<cont ext - par an>
<par am nane>cont ext Conf i gLocat i on</ par am nane>

Spring Framework (2.0.6) 83

The 1oC container

<par am val ue>/ \EEB- | NF/ daoCont ext . xm /WEB- | NF/ appl i cati onCont ext . xm </ par am val ue>
</ cont ext - par an>

<l'i st ener>
<l i stener-cl ass>org. spri ngfranewor k. web. cont ext . Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

<l-- or use the ContextLoaderServiet instead of the above |istener

<servl et >
<servl et - name>cont ext </ ser vl et - nanme>
<servl et - cl ass>or g. spri ngf ramewor k. web. cont ext . Cont ext Loader Ser vl et </ servl et - cl ass>
<l oad- on- st art up>1</| oad- on- st art up>

</servlet>

-->

The listener inspects the contextConfiglLocation parameter. |If it doesn't exist, itll use
/ VEB- | NF/ appl i cat i onCont ext . xn as a default. When it does exist, it'll separate the String using predefined
delimiters (comma, semi-colon and whitespace) and use the values as locations where application contexts will
be searched for. The Cont ext Loader Ser vl et can be used instead of the Cont ext Loader Li st ener . The servlet
will usethe' cont ext Confi gLocati on' parameter just as the listener does.

3.9. Glue code and the evil singleton

The majority of the code inside an application is best written in a DI style, where that code is served out of a
Spring 10C container, has its own dependencies supplied by the container when it is created, and is completely
unaware of the container. However, for the small glue layers of code that are sometimes needed to tie other
code together, there is sometimes a need for singleton (or quasi-singleton) style access to a Spring 1oC
container. For example, third party code may try to construct new objects directly (4 ass. f or Nane() style),
without the ability to force it to get these objects out of a Spring |oC container. If the object constructed by the
third party code isjust a small stub or proxy, which then uses a singleton style access to a Spring 10C container
to get areal object to delegate to, then inversion of control has still been achieved for the majority of the code
(the object coming out of the container); thus most code is still unaware of the container or how it is accessed,
and remains uncoupled from other code, with all ensuing benefits. EJBs may also use this stub/proxy approach
to delegate to a plain Java implementation object, coming out of a Spring 10C container. While the Spring 10C
container itself ideally does not have to be a singleton, it may be unredlistic in terms of memory usage or
initialization times (when using beans in the Spring 10C container such as a Hibernate Sessi onFact ory) for
each bean to use its own, non-singleton Spring 10C container.

As another example, in a complex J2EE apps with multiple layers (various JAR files, EJBs, and WAR files
packaged as an EAR), with each layer having its own Spring oC container definition (effectively forming a
hierarchy), the preferred approach when there is only one web-app (WAR) in the top hierarchy is to smply
create one composite Spring 10C container from the multiple XML definition files from each layer. All of the
various Spring 10C container implementations may be constructed from multiple definition files in this fashion.
However, if there are multiple sibling web-applications at the root of the hierarchy, it is problematic to create a
Spring 10C container for each web-application which consists of mostly identical bean definitions from lower
layers, as there may be issues due to increased memory usage, issues with creating multiple copies of beans
which take a long time to initialize (e.g. a Hibernate Sessi onFact ory), and possible issues due to side-effects.
As an alternative, classes such as Cont ext Si ngl et onBeanFact oryLocat or Of Si ngl et onBeanFact orylLocat or
may be used to demand-load multiple hierarchical (that is one container is the parent of another) Spring 10C
container instances in a singleton fashion, which may then be used as the parents of the web-application Spring
loC container instances. The result is that bean definitions for lower layers are loaded only as needed, and
loaded only once.

3.9.1. Using the Singleton-helper classes

Spring Framework (2.0.6) 84

http://www.springframework.org/docs/api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html
http://www.springframework.org/docs/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html

The 1oC container

You can see a detailed example of their usage in SingletonBeanFactoryl ocator and
ContextSingletonBeanFactoryL ocator by viewing their respective Javadocs.

As mentioned in the chapter on EJBs, the Spring convenience base classes for EJBs normally use a
non-singleton BeanFactoryLocator implementation, which is easily replaced by the use of
Si ngl et onBeanFact or yLocat or and Cont ext Si ngl et onBeanFact or yLocat or if thereisaneed.

Spring Framework (2.0.6) 85

http://www.springframework.org/docs/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html
http://www.springframework.org/docs/api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html

Chapter 4. Resources

4.1. Introduction

Javas standard j ava. net . URL class and standard handlers for various URL prefixes unfortunately are not quite
adequate enough for al access to low-level resources. For example, there is no standardized URL
implementation that may be used to access a resource that needs to be obtained from the classpath, or relative to
aservl et Cont ext . Whileit is possible to register new handlers for specialized URL prefixes (similar to existing
handlers for prefixes such as htt p:), thisis generally quite complicated, and the URL interface till lacks some
desirable functionality, such as a method to check for the existence of the resource being pointed to.

4.2. The Resour ce interface

Spring's Resour ce interface is meant to be a more capable interface for abstracting access to low-level
resources.
public interface Resource extends |nputStreanSource {
bool ean exists();
bool ean i sOpen();
URL get URL() throws | OException;
File getFile() throws | CExcepti on;
Resource createRel ative(String relativePath) throws | OException;
String getFilenane();

String getDescription();

public interface |nputStreanSource {

I nput St ream get | nput Strean{) throws | OException;

Some of the most important methods from the Resour ce interface are:

e get |l nput Strean() : locates and opens the resource, returning an | nput St reamfor reading from the resource.
It is expected that each invocation returns a fresh | nput St ream It is the responsibility of the caller to close
the stream.

e exists(): returnsabool ean indicating whether this resource actually existsin physical form.

e isQpen(): returns a bool ean indicating whether this resource represents a handle with an open stream. If
true, the I nput St ream cannot be read multiple times, and must be read once only and then closed to avoid
resource leaks. Will be false for al usual resource implementations, with the exception of
| nput St r eanResour ce.

e get Description(): returns adescription for this resource, to be used for error output when working with the
resource. Thisis often the fully qualified file name or the actual URL of the resource.

Other methods allow you to obtain an actual URL or Fil e object representing the resource (if the underlying

Spring Framework (2.0.6) 86

Resources

implementation is compatible, and supports that functionality).

The Resour ce abstraction is used extensively in Spring itself, as an argument type in many method signatures
when a resource is needed. Other methods in some Spring APIs (such as the constructors to various
Appl i cati onCont ext implementations), take a st ri ng which in unadorned or simple form is used to create a
Resour ce appropriate to that context implementation, or via special prefixes on the string path, adlow the
caller to specify that a specific Resour ce implementation must be created and used.

While the Resour ce interface is used a lot with Spring and by Spring, it's actually very useful to use as a
genera utility class by itself in your own code, for access to resources, even when your code doesn't know or
care about any other parts of Spring. While this couples your code to Spring, it really only couples it to this
small set of utility classes, which are serving as a more capable replacement for URL, and can be considered
equivalent to any other library you would use for this purpose.

It is important to note that the Resour ce abstraction does not replace functionality: it wraps it where possible.
For example, aur | Resour ce Wraps a URL, and uses the wrapped URL to do it's work.

4.3. Built-in Resour ce implementations

There are anumber of Resour ce implementations that come supplied straight out of the box in Spring:

4.3.1. Ur|l Resource

The ur | Resour ce wrapsaj ava. net . URL, and may be used to access any object that is normally accessible viaa
URL, such asfiles, an HTTP target, an FTP target, etc. All URLs have a standardized st ri ng representation,
such that appropriate standardized prefixes are used to indicate one URL type from another. This includes
file: for accessing filesystem paths, htt p: for accessing resources viathe HTTP protocol, ft p: for accessing
resources via FTP, etc.

A Url Resour ce is created by Java code explicitly using the ur | Resour ce constructor, but will often be created
implicitly when you call an APl method which takes a st ri ng argument which is meant to represent a path. For
the latter case, a JavaBeans Propert yEdi t or Will ultimately decide which type of Resource to create. If the
path string contains a few well-known (to it, that is) prefixes such as cl asspat h: , it will create an appropriate
specialized Resour ce for that prefix. However, if it doesn't recognize the prefix, it will assume the thisisjust a
standard URL string, and will create a Ur | Resour ce.

4.3.2. d assPat hResour ce

This class represents a resource which should be obtained from the classpath. This uses either the thread
context class loader, a given class loader, or agiven class for loading resources.

This Resour ce implementation supports resolution asj ava. i o. Fi | e if the class path resource resides in the file
system, but not for classpath resources which reside in ajar and have not been expanded (by the servlet engine,
or whatever the environment is) to the filesystem. To address this the various Resour ce implementations
always support resolution asaj ava. net . URL.

A d assPat hResour ce is created by Java code explicitly using the d assPat hResour ce constructor, but will
often be created implicitly when you call an APl method which takes a st ri ng argument which is meant to
represent a path. For the latter case, a JavaBeans PropertyEditor will recognize the special prefix
cl asspat h: on the string path, and create a d assPat hResour ce in that case.

Spring Framework (2.0.6) 87

Resources

4.3.3. Fi | eSyst enmResour ce

Thisis a Resour ce implementation for j ava. i o. Fi | e handles. It obviously supports resolution as aFi | e, and
asaURL.

4.3.4. Servl et Cont ext Resour ce

This is a Resource implementation for Servl et Cont ext resources, interpreting relative paths within the
relevant web application's root directory.

This always supports stream access and URL access, but only alows java.io. Fil e access when the web
application archive is expanded and the resource is physically on the filesystem. Whether or not it's expanded
and on the filesystem like this, or accessed directly from the JAR or somewhere else like a DB (it's
conceivable) is actually dependent on the Servlet container.

4.3.5. | nput St r eanResour ce

A Resource implementation for a given I nput Stream This should only be used if no specific Resource
implementation is applicable. In particular, prefer Byt eArrayResource or any of the file-based Resource
implementations where possible.

In contrast to other Resour ce implementations, this is a descriptor for an already opened resource - therefore
returning t rue from i sgpen() . Do not use it if you need to keep the resource descriptor somewhere, or if you
need to read a stream multiple times.

4.3.6. Byt eArr ayResour ce

This is a Resour ce implementation for a given byte array. It creates a Byt eArrayl nput St ream for the given
byte array.

It's useful for loading content from any given byte array, without having to resort to a single-use
I nput St r eanResour ce.

4.4. The Resour ceLoader

The Resour ceLoader interface is meant to be implemented by objects that can return (i.e. load) Resource
instances.

public interface ResourcelLoader {
Resource get Resource(String | ocation);
}

All application contexts implement the Resour ceLoader interface, and therefore all application contexts may be
used to obtain Resour ce instances.

When you call get Resour ce() on a specific application context, and the location path specified doesn't have a
specific prefix, you will get back a Resour ce type that is appropriate to that particular application context. For
example, assume the following snippet of code was executed against a d assPat hXni Appl i cati onCont ext

instance:

Resource tenpl ate = ctx. get Resource("sone/resource/ path/ nyTenpl ate. txt);

Spring Framework (2.0.6) 88

Resources

What would be returned would be a d assPat hResource; if the same method was executed against a
Fi | eSystenXni Appl i cationContext instance, youd get back a FileSystenResource. For a
WebAppl i cat i onCont ext , you'd get back a Ser vi et Cont ext Resour ce, and SO On.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force d assPat hResour ce to be used, regardless of the application context
type, by specifying the specia cl asspat h: prefix:

Resource tenpl ate = ctx. get Resource("cl asspat h: sone/ r esour ce/ pat h/ nyTenpl ate. t xt);

Similarly, one can force aur | Resour ce to be used by specifying any of the standard j ava. net . URL prefixes:

Resource tenplate = ctx.getResource("file:/sone/resource/path/ nyTenpl ate. txt);

Resource tenpl ate = ctx. get Resource("http://nyhost.coniresource/path/nyTenpl ate. txt);

The following table summarizes the strategy for converting St ri ngSto Resour ceS:

Table4.1. Resour ce strings

Prefix Example Explanation
classpath: cl asspat h: coni nyapp/ confi g. xm Loaded from the classpath.
file: file:/datal/config.xm Loaded as a URL, from the
filesystem. 2
http: http:// nyserver/| ogo. png Loaded asa URL.
(none) / dat a/ confi g. xn Depends on the underlying

Appl i cati onCont ext .

8But see also the section entitled Section 4.7.3, “Fi | eSyst enResour ce caveats’.

4.5. The Resour ceLoader Awnar e interface

The Resour ceLoader Avar e interface is a special marker interface, identifying objects that expect to be provided
with aResour ceLoader reference.

public interface ResourcelLoader Anare {

voi d set Resour celLoader (Resour ceLoader resourcelLoader);

}

When a class implements ResourcelLoader Aware and is deployed into an application context (as a
Spring-managed bean), it is recognized as Resour celLoader Awnar e by the application context. The application
context will then invoke the set ResourcelLoader (Resour ceLoader), supplying itself as the argument
(remember, all application contextsin Spring implement the Resour ceLoader interface).

Spring Framework (2.0.6) 89

Resources

Of course, since an ApplicationContext IS a ResourcelLoader, the bean could aso implement the
Appl i cat i onCont ext Awar e interface and use the supplied application context directly to load resources, but in
generd, it's better to use the specialized Resour ceLoader interface if that's all that's needed. The code would
just be coupled to the resource loading interface, which can be considered a utility interface, and not the whole
Spring Appl i cati onCont ext interface.

4.6. Resour ces as dependencies

If the bean itself is going to determine and supply the resource path through some sort of dynamic process, it
probably makes sense for the bean to use the Resour ceLoader interface to load resources. Consider as an
example the loading of atemplate of some sort, where the specific resource that is needed depends on the role
of the user. If the resources are static, it makes sense to eliminate the use of the Resour ceLoader interface
completely, and just have the bean expose the Resource properties it needs, and expect that they will be
injected into it.

What makes it trivial to then inject these properties, is that all application contexts register and use a special
JavaBeans Pr oper t yEdi t or Which can convert Stri ng paths to Resour ce objects. So if nyBean has a template
property of type Resour ce, it can be configured with a simple string for that resource, as follows:

<bean i d="nyBean" class="...">
<property nanme="tenpl ate" val ue="sone/resource/ path/ nyTenpl ate. txt"/>
</ bean>

Note that the resource path has no prefix, so because the application context itself is going to be used as the
Resour ceLoader, the resource itself will be loaded via a d assPat hResource, Fil eSystenResource, Of
Ser vl et Cont ext Resour ce (as appropriate) depending on the exact type of the context.

If there is a need to force a specific Resour ce type to be used, then a prefix may be used. The following two
examples show how to force a d assPat hResource and a Url Resource (the latter being used to access a
filesystemfile).

<property name="tenpl ate" val ue="cl asspat h: sone/ r esour ce/ pat h/ nyTenpl ate. t xt">

<property name="tenpl ate" val ue="file:/some/resource/ path/ myTenpl ate.txt"/>

4.7. Application contexts and Resour ce paths

4.7.1. Constructing application contexts

An application context constructor (for a specific application context type) generally takes a string or array of
strings as the location path(s) of the resource(s) such as XML files that make up the definition of the context.

When such a location path doesn't have a prefix, the specific Resour ce type built from that path and used to
load the bean definitions, depends on and is appropriate to the specific application context. For example, if you
create ad assPat hXm Appl i cati onCont ext asfollows:

Appl i cationContext ctx = new C assPat hXnl Appl i cati onCont ext (" conf/appContext.xm ");

The bean definitions will be loaded from the classpath, as a d assPat hResour ce will be used. But if you create

Spring Framework (2.0.6) 90

Resources

aFi| eSyst enXmi Appl i cati onCont ext asfollows:

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext (" conf/appCont ext . xm ");

The bean definition will be loaded from a filesystem location, in this case relative to the current working
directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location path will override the
default type of Resour ce created to load the definition. So thisFi | eSyst emXnl Appl i cat i onCont ext ...

Appl i cationContext ctx =
new Fi | eSyst enXml Appl i cati onCont ext (" cl asspat h: conf/ appCont ext . xm ") ;

will actualy load it's bean definitions from the classpath. However, it is dtll a
Fi | eSyst enXml Appl i cati onCont ext . If it is subsequently used as a Resour ceLoader , any unprefixed paths will
till be treated as filesystem paths.

4.7.1.1. Constructing d assPat hXxm Appl i cati onCont ext instances - shortcuts

The d assPat hxm Appl i cati onCont ext exposes a humber of constructors to enable convenient instantiation.
The basic idea is that one supplies merely a string array containing just the filenames of the XML files
themselves (without the leading path information), and one also supplies a dass; the
C assPat hXni Appl i cati onCont ext Will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:

conl
f oo/
servi ces. xm
daos. xm
Messenger Ser vi ce. cl ass

A O assPat hxnl Appl i cati onCont ext instance composed of the beans defined in the * services. xm* and
" daos. xni ' could be instantiated like so...

Appl i cationContext ctx = new C assPat hXml Appli cati onCont ext (
new String[] {"services.xm ", "daos.xm "}, Messenger Servi ce. cl ass);

Please do consult the Javadocs for the C assPat hxnl Appl i cati onCont ext class for details of the various
constructors.

4.7.2. Wildcards in application context constructor resource paths

The resource paths in application context constructor values may be a simple path (as shown above) which has
a one-to-one mapping to a target Resource, or alternately may contain the specia "classpath*:" prefix and/or
internal Ant-style regular expressions (matched using Spring's Pat hvat cher Utility). Both of the latter are
effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components can "publish’
context definition fragments to a well-known location path, and when the final application context is created
using the same path prefixed viacl asspat h*: , al component fragments will be picked up automatically.

Note that this wildcarding is specific to use of resource paths in application context constructors (or when using
the Pat hivat cher utility class hierarchy directly), and is resolved at construction time. It has nothing to do with

Spring Framework (2.0.6) 91

Resources

the Resour ce type itself. It's not possible to use the cl asspat h*: prefix to construct an actual Resource, as a
resource points to just one resource at atime.

4.7.2.1. Ant-style Patterns

When the path location contains an Ant-style pattern, for example:

/ VEB- | NF/ * - cont ext . xm

com nyconpany/ **/ appl i cati onCont ext . xm

file:C /some/path/*-context.xmn

cl asspat h: conf myconpany/ **/ appl i cati onCont ext . xm

... the resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces a
Resource for the path up to the last non-wildcard segment and obtains a URL from it. If this URL isnot a"jar:"
URL or container-specific variant (e.g. "zip:" in WebLogic, "wsjar" in WebSphere, etc.), then a
java.io. File isobtained from it, and used to resolve the wildcard by walking the filesystem. In the case of a
jar URL, the resolver either gets aj ava. net. Jar URLConnect i on from it, or manually parse the jar URL, and
then traverse the contents of the jar file, to resolve the wildcards.

4.7.2.1.1. Implications on portability

If the specified path is aready afile URL (either explicitly, or implicitly because the base Resour ceLoader isa
filesystem one, then wildcarding is guaranteed to work in a completely portable fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path segment
URL viaad assl oader . get Resource() cal. Since thisisjust a node of the path (not the file at the end) it is
actually undefined (in the d assLoader Javadocs) exactly what sort of a URL is returned in this case. In
practice, it is dways a java.io. Fil e representing the directory, where the classpath resource resolves to a
filesystem location, or a jar URL of some sort, where the classpath resource resolves to a jar location. Still,
there is a portability concern on this operation.

If a jaa URL is obtained for the last non-wildcard segment, the resolver must be able to get a
java. net . Jar URLConnect i on from it, or manually parse the jar URL, to be able to walk the contents of the jar,
and resolve the wildcard. This will work in most environments, but will fail in others, and it is strongly
recommended that the wildcard resolution of resources coming from jars be thoroughly tested in your specific
environment before you rely on it.

4.7.2.2. The cl asspat h*: prefix

When constructing an XML-based application context, a location string may use the special cl asspat h*:
prefix:

Appl i cationContext ctx =
new C assPat hXm Appl i cat i onCont ext (" cl asspat h*: conf/ appCont ext . xm ") ;

This special prefix specifiesthat all classpath resources that match the given name must be obtained (internally,
this essentially happens via a C assLoader . get Resources(...) cal), and then merged to form the fina
application context definition.

Classpath*: portability

“a
The wildcard classpath relies on the get Resour ces() method of the underlying classloader. As
most application servers nowadays supply their own classloader implementation, the behavior
might differ especially when dealing with jar files. A simple test to check if cl asspat h* worksisto

Spring Framework (2.0.6) 92

Resources

use the classloader to load a file from within a jar on the classpath:
get d ass() . get O assLoader () . get Resour ces(" <someFi | el nsi deTheJar>"). Try this test with
files that have the same name but are placed inside two different locations. In case an inappropriate
result is returned, check the application server documentation for settings that might affect the
classloader behavior.

The"cl asspat h*: " prefix can also be combined with aPat hivat cher pattern in the rest of the location path, for
example "cl asspat h*: META- | NF/ *-beans. xnl ". In this case, the resolution strategy is fairly smple: a
Classl oader.getResources() call is used on the last non-wildcard path segment to get all the matching resources
in the class loader hierarchy, and then off each resource the same PathMatcher resoltion strategy described
aboveis used for the wildcard subpath.

4.7.2.3. Other notes relating to wildcards

Please note that "cl asspat h*: " when combined with Ant-style patterns will only work reliably with at least
one root directory before the pattern starts, unless the actual target files reside in the file system. This means
that a pattern like "cl asspat h*: *. xm " will not retrieve files from the root of jar files but rather only from the
root of expanded directories. This originates from a limitation in the JDK's d assLoader . get Resour ces()
method which only returns file system locations for a passed-in empty string (indicating potential roots to
search).

Ant-style patterns with "cl asspath: " resources are not guaranteed to find matching resources if the root
package to search is available in multiple class path locations. Thisis because a resource such as

conl nyconpany/ packagel/ servi ce- cont ext . xm

may be in only one location, but when a path such as

cl asspat h: conf myconpany/ **/ servi ce- cont ext . xn

is used to try to resolve it, the resolver will work off the (first) URL returned by
get Resour ce(" conf nyconpany") ;. If this base package node exists in multiple classloader locations, the actual
end resource may not be underneath. Therefore, preferably, use "cl asspat h*: " with the same Ant-style pattern
in such a case, which will search all class path locations that contain the root package.

4.7.3. Fi | eSyst emResour ce caveats

A FileSystenResource that is not attached to a FileSystemdpplicationContext (that is, a
Fi | eSyst emAppl i cati onCont ext iSnot the actual Resour ceLoader) will treat absolute vs. relative paths as you
would expect. Relative paths are relative to the current working directory, while absolute paths are relative to
the root of the filesystem.

For backwards compatibility (historical) reasons however, this changes when the
Fi | eSyst emAppl i cati onCont ext iSthe ResourcelLoader. The Fi | eSyst emAppl i cati onCont ext Simply forces
all attached Fi | eSyst enResour ce instances to treat al location paths as relative, whether they start with a
leading slash or not. In practice, this means the following are equivalent:

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext (" conf/context.xm ");

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onContext ("/conf/context.xm");

Spring Framework (2.0.6) 93

Resources

As are the following: (Even though it would make sense for them to be different, as one case is relative and the
other absolute.)

Fi | eSyst enXml Appl i cati onContext ctx = ...;
ct x. get Resour ce("sone/ resour ce/ path/ nyTenpl ate. txt");

Fi | eSyst enXml Appl i cati onContext ctx = ...;
ct x. get Resour ce("/ sone/ resource/ pat h/ nyTenpl ate. txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths with
Fi | eSyst enResour ce / Fi | eSyst emXni Appl i cati onCont ext , and just force the use of a Ur| Resour ce, by using
thefile: URL prefix.

/'l actual context type doesn't matter, the Resource Will always be Ul Resource
ct x. get Resource("fil e:/sonme/resource/ path/ nyTenpl ate. txt");

/'l force this FileSystemXm ApplicationContext to load it's definition via a Ul Resource
Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onContext ("file:/conf/context.xm");

Spring Framework (2.0.6) 94

Chapter 5. Validation, Data-binding, the Beanw apper,
and PropertyEditors

5.1. Introduction

There are pros and cons for considering validation as business logic, and Spring offers a design for validation
(and data binding) that does not exclude either one of them. Specifically validation should not be tied to the
web tier, should be easy to localize and it should be possible to plug in any validator available. Considering the
above, Spring has come up with aval i dat or interface that is both basic and eminently usable in every layer of
an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of an application
(or whatever objects you use to process user input). Spring provides the so-called Dat aBi nder to do exactly
that. The val i dat or and the Dat aBi nder make up the val i dat i on package, which is primarily used in but not
limited to the MV C framework.

The Beanw apper is a fundamental concept in the Spring Framework and is used in a lot of places. However,
you probably will not ever have the need to use the Beanw apper directly. Because this is reference
documentation however, we felt that some explanation might be in order. We're explaining the Beanw apper in
this chapter since if you were going to use it at all, you would probably do so when trying to bind data to
objects, which is strongly related to the Beanw apper .

Spring uses PropertyEditors all over the place. The concept of a PropertyEditor is part of the JavaBeans
specification. Just as the Beanw apper, it's best to explain the use of PropertyEditors in this chapter as well,
sinceit's closely related to the Beanw apper and the Dat aBi nder .

5.2. Validation using Spring's Vval i dat or interface

Spring's features a val i dat or interface that you can use to validate objects. The val i dat or interface works
using an Error s object so that while validating, validators can report validation failures to the Er r or s abject.

Let's consider a small data object:

public class Person {

private String nane;
private int age;

// the usual getters and setters...

}

We're going to provide validation behavior for the Per son class by implementing the following two methods of
theorg. spri ngf ramewor k. val i dati on. Val i dat or interface:

e supports(d ass) - Canthisval i dat or validate instances of the supplied c ass?
e validate(bject, org.springfranmework.validation.Errors) - validates the given object and in case of
validation errors, registers those with the given r r or s object

Implementing a val i dat or isfairly straightforward, especially when you know of the val i dati onUti | s helper
class that the Spring Framework also provides.

Spring Framework (2.0.6) 95

Validation, Data-binding, the Beanw apper , and

public class PersonValidator inplenents Validator {

/**
* This validator validates just Person i nstances
*/
publ i ¢ bool ean supports(d ass clazz) {
return Person. cl ass. equal s(cl azz);
}

public void validate(Cbject obj, Errors e) {
ValidationUils.rejectlfEmpty(e, "nanme", "name.enpty");
Person p = (Person) obj;

if (p.getAge() < 0) {

e.rejectVal ue("age", "negativeval ue");
} else if (p.getAge() > 110) {
e.rejectVal ue("age", "too.darn.old");

}

As you can see, the static reject!fEnpty(..) method on the validationUtils classis used to rgect the
"name' property if itisnul | or the empty string. Have alook at the Javadoc for the val i dationUtils classto
see what functionality it provides besides the example shown previoudly.

While it is certainly possible to implement a single val i dat or class to validate each of the nested objectsin a
rich object, it may be better to encapsulate the validation logic for each nested class of object in its own
val i dat or implementation. A simple example of a 'rich' object would be a cust orer that is composed of two
String properties (a first and second name) and a complex Address object. Address objects may be used
independently of cust omer objects, and so a distinct AddressVal i dat or has been implemented. If you want
your Cust oner Val i dat or t0 reuse the logic contained within the Addr essVal i dat or class without recourse to
copy-n-paste you can dependency-inject or instantiate an Addr essVal i dat or within your Cust orer val i dat or,
and useit like so:
public class CustonerValidator inplenments Validator {
private final Validator addressValidator;
publ i c CustonerValidator(Validator addressValidator) {
i f (addressValidator == null) {
throw new |11 egal Argunent Excepti on("The supplied [Validator] is required and nmust not be null.");
i f (!addressValidator. supports(Address.class)) {

throw new ||| egal Argument Excepti on(
"The supplied [Validator] must support the validation of [Address] instances.");

}
thi s. addressVal i dator = addressVal i dator;
}
/**
* This validator validates customer instances, and any subcl asses of custoner too0
*/

publ i c bool ean supports(d ass clazz) {
return Custoner.cl ass.isAssi gnabl eFron{cl azz);
}

public void validate(Cbject target, Errors errors) {
ValidationUils.rejectlfEnmptyO Witespace(errors, "firstName", "field.required");

ValidationUils.rejectlfEnmptyO Witespace(errors, "surname", "field.required");
Cust omer customer = (Custoner) target;
try {

errors. pushNest edPat h("addr ess") ;
Val i dationUils.invokeValidator(this.addressValidator, custoner.getAddress(), errors);

} finally {
errors. popNest edPat h();
}

Spring Framework (2.0.6) 96

PropertyEditors

Validation errors are reported to the Er r or s object passed to the validator. In case of Spring Web MV C you can
use <spri ng: bi nd/ > tag to inspect the error messages, but of course you can also inspect the errors object
yourself. More information about the methods it offers can be found from the Javadoc.

5.3. Resolving codes to error messages

We've talked about databinding and validation. Outputting messages corresponding to validation errors is the
last thing we need to discuss. In the example we've shown above, we rejected the nane and the age field. If
we're going to output the error messages by using a MessageSour ce, we Will do so using the error code we've
given when regjecting the field (‘'name’ and 'age’ in this case). When you call (either directly, or indirectly, using
for example the val i dationUtils class) reject Val ue or one of the other rej ect methods from the Errors
interface, the underlying implementation will not only register the code you've passed in, but also a number of
additional error codes. What error codes it registers is determined by the MessageCodesResol ver that is used.
By default, the Def aul t MessageCodesResol ver is used, which for example not only registers a message with
the code you gave, but also messages that include the field name you passed to the reject method. So in case
you reject a field using rej ect val ue("age", “"too.darn.old"), apart from the t oo. darn. ol d code, Spring
will also register t oo. darn. ol d. age and t oo. dar n. ol d. age. i nt (0 the first will include the field name and
the second will include the type of the field); this is done as a convenience to aid developers in targeting error
messages and suchlike.

More information on the MessageCodesResol ver and the default strategy can be found online with the
Javadocs for M essageCodesResolver and DefaultM essageCodesResolver respectively.

5.4. Bean manipulation and the BeanWw apper

The or g. spri ngf ramewor k. beans package adheres to the JavaBeans standard provided by Sun. A JavaBean is
simply a class with a default no-argument constructor, which follows a naming conventions where a property
named bi ngoMadness has a setter set Bi ngoMadness(..) and a getter get Bi ngoMadness(). For more
infformation about JavaBeans and the specification, please refer to Sun's website
(java.sun.com/products/javabeans).

One quite important concept of the beans package is the Beanw apper interface and its corresponding
implementation (Beanw apper | npl). As quoted from the Javadoc, the Beanw apper offers functionality to set
and get property values (individualy or in bulk), get property descriptors, and to query properties to determine
if they are readable or writable. Also, the Beanw apper offers support for nested properties, enabling the setting
of properties on sub-properties to an unlimited depth. Then, the Beanw apper supports the ability to add
standard JavaBeans PropertyChangelisteners and Vetoabl eChangeLi steners, without the need for
supporting code in the target class. Last but not least, the Beanw apper provides support for the setting of
indexed properties. The Beanw apper usually isn't used by application code directly, but by the Dat aBi nder and
the BeanFact ory.

The way the Beanw apper works is partly indicated by its name: it wraps a bean to perform actions on that
bean, like setting and retrieving properties.

5.4.1. Setting and getting basic and nested properties

Setting and getting properties is done using the set Pr oper t yval ue(s) and get Propert yVval ue(s) methods that
both come with a couple of overloaded variants. They're al described in more detail in the Javadoc Spring
comes with. What's important to know is that there are a couple of conventions for indicating properties of an
object. A couple of examples:

Spring Framework (2.0.6) 97

http://www.springframework.org/docs/api/org/springframework/validation/MessageCodesResolver.html
http://www.springframework.org/docs/api/org/springframework/validation/DefaultMessageCodesResolver.html
http://java.sun.com/products/javabeans/

Validation, Data-binding, the Beanw apper , and

Table 5.1. Examples of properties

Expression Explanation

name Indicates the property name corresponding to the methods get Nane() Of i sNane()
and set Narre(.. .)

account . nane Indicates the nested property nane of the property account corresponding e.g. to
the methods get Account () . set Nane() Or get Account (). get Narre()

account [2] Indicates the third element of the indexed property account . Indexed properties
can be of typearray, | i st or other naturally ordered collection

account [COVPANYNAVE] Indicates the value of the map entry indexed by the key COMPANYNAME of the
Map property account

Below you'll find some examples of working with the Beanw apper to get and set properties.

(This next section is not vitally important to you if you're not planning to work with the Beanw apper directly. If
you're just using the Dat aBi nder and the BeanFact ory and their out-of-the-box implementation, you should
skip ahead to the section about Pr oper t yEdi t or s.)

Consider the following two classes:

public class Conpany {
private String nane;
private Enpl oyee managi ngDirector;

public String getName() {
return this.nane;

public void setNane(String nane) {
thi s. name = nang;

}
publ i c Enpl oyee get Managi ngDi rector () {
return this. managi ngDirector;

public void setManagi ngDirect or (Enpl oyee managi ngDi rector) {
t hi s. managi ngDi rect or = managi ngDi rect or;

}

public class Enpl oyee {
private String naneg;
private float salary;

public String getName() {
return this.nane;
}

public void setNane(String nane) {
thi s. name = nane;

}
public float getSalary() {
return sal ary;

public void setSalary(float salary) {
this.salary = sal ary;
}

The following code snippets show some examples of how to retrieve and manipulate some of the properties of
instantiated Conpani es and Enpl oyees:

BeanW apper conpany = BeanW apper | npl (new Conpany());

Spring Framework (2.0.6) 98

PropertyEditors

/] setting the conpany nane..

conpany. set PropertyVal ue("nanme", "Sone Conpany Inc.");
/Il ... can also be done like this:
PropertyVal ue val ue = new PropertyVal ue("nanme", "Sone Conpany Inc.");

conpany. set PropertyVal ue(val ue);

/Il ok, let's create the director and tie it to the conpany:

BeanW apper ji m = BeanW apper | npl (new Enpl oyee());

jimsetPropertyVal ue("nane", "Jim Stravi nsky");

conpany. set PropertyVal ue("managi ngDirector”, jim getWappedl nstance());

/'l retrieving the salary of the nmanagi ngDirector through the conpany
Fl oat salary = (Float) conpany.getPropertyVal ue("managi ngDirector.salary");

5.4.2. Built-in PropertyEditor implementations

Spring heavily uses the concept of PropertyEditors. Sometimes it might be handy to be able to represent
properties in a different way than the object itself. For example, a date can be represented in a human readable
way, while we're still able to convert the human readable form back to the original date (or even better: convert
any date entered in a human readable form, back to Dat e objects). This behavior can be achieved by registering
custom editors, of type java. beans. PropertyEditor. Registering custom editors on a BeanW apper Of
aternately in a specific 10C container as mentioned in the previous chapter, gives it the knowledge of how to
convert properties to the desired type. Read more about PropertyEditors in the Javadoc of the j ava. beans
package provided by Sun.

A couple of examples where property editing is used in Spring

 setting properties on beans is done using Propert yEdi t ors. When mentioning j ava. | ang. String as the
value of a property of some bean you're declaring in XML file, Spring will (if the setter of the corresponding
property has ad ass-parameter) use the d assEdi t or to try to resolve the parameter to ac ass object

e parsing HTTP request parameters in Spring's MV C framework is done using all kinds of PropertyEditors
that you can manually bind in all subclasses of the ConmandControl | er

Spring has a number of built-in Propert yEdi t or s to make life easy. Each of those is listed below and they are
al located in the org. springframewor k. beans. propertyedi tors package. Most, but not al (as indicated
below), are registered by default by Beanw apper | npl . Where the property editor is configurable in some
fashion, you can of course still register your own variant to override the default one:

Table5.2. Built-in propertyEditors

Class Explanation

Byt eAr r ayPr oper t yEdi t or Editor for byte arrays. Strings will simply be converted to their
corresponding byte representations. Registered by default by
BeanW apper | npl .

C assEdi t or Parses Strings representing classes to actual classes and the other
way aound. When a class is not found, an
I'l1 egal Argunent Exception is thrown. Registered by default by
BeanW apper | npl .

Cust onBool eanEdi t or Customizable property editor for Bool ean properties. Registered by
default by Beanw apper I npl , but, can be overridden by registering
custom instance of it as custom editor.

Cust onCol | ect i onEdi t or Property editor for Collections, converting any source Col | ecti on
to agiven target Col | ect i on type.

Spring Framework (2.0.6) 99

Validation, Data-binding, the Beanw apper , and

Class Explanation

Cust onDat eEdi t or Customizable property editor for javautil.Date, supporting a
custom DateFormat. NOT registered by default. Must be user
registered as needed with appropriate format.

Cust omN\unber Edi t or Customizable property editor for any Number subclass like
Integer, Long, Float, Double. Registered by default by
BeanW apper | mpl , but can be overridden by registering custom
instance of it as a custom editor.

Fi | eEdi t or Capable of resolving Strings to j ava. i o. Fi | e objects. Registered
by default by Beanw apper I npl .

| nput St r eanEdi t or One-way property editor, capable of taking a text string and
producing (via an intermediate Resour ceEdi t or and Resour ce) an
I nput Stream SO | nput Stream properties may be directly set as
Strings. Note that the default usage will not close the | nput Stream
for you! Registered by default by Beanw apper | mpl .

Local eEdi t or Capable of resolving Strings to Local e objects and vice versa (the
String format is [language]_[country]_[variant], which is the same
thing the toString() method of Locale provides). Registered by
default by Beanw apper I npl .

Pat t er nEdi t or Capable of resolving Strings to JDK 1.5 pat t ern objects and vice
versa
Properti esEdit or Capable of converting Strings (formatted using the format as

defined in the Javadoc for the javalang.Properties class) to
Properti es oObjects. Registered by default by Beanw apper | npl .

StringTri mrer Edi t or Property editor that trims Strings. Optionally alows transforming
an empty string into anul | value. NOT registered by default; must
be user registered as needed.

URLEdi t or Capable of resolving a String representation of a URL to an actua

URL object. Registered by default by Beanw apper I npl .

Spring uses the j ava. beans. Propert yEdi t or Manager to set the search path for property editors that might be
needed. The search path aso includes sun. bean. edi t or s, which includes PropertyEdi t or implementations
for types such as Font, Col or, and most of the primitive types. Note also that the standard JavaBeans
infrastructure will automatically discover propertyEditor classes (without you having to register them
explicitly) if they are in the same package as the class they handle, and have the same name as that class, with
"Edi tor' appended; for example, one could have the following class and package structure, which would be
sufficient for the FooEdi t or classto be recognized and used as the Pr oper t yEdi t or for Foo-typed properties.

com
chank

pop
Foo
FooEdi t or /] the pPropertyEditor for the Foo cl ass

Note that you can also use the standard Beanl nfo JavaBeans mechanism here as well (described in
not-amazing-detail here). Find below an example of using the Beanl nf o mechanism for explicitly registering
one or more Pr oper t yEdi t or instances with the properties of an associated class.

Spring Framework (2.0.6) 100

http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html
http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html

PropertyEditors

com
chank

pop
Foo
FooBeanl nf o /'l the Beaninfo for the Foo cl ass

Here is the Java source code for the referenced FooBeanlinfo class. This would associate a
Cust omNunber Edi t or with the age property of the Foo class.

public class FooBeanl nfo extends SinpleBeanlnfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {
final PropertyEditor nunber PE = new Cust onmNunber Edi t or (| nt eger. cl ass, true);
PropertyDescri pt or ageDescriptor = new PropertyDescriptor("age", Foo.class) {
public PropertyEditor createPropertyEditor(Object bean) {
return nunber PE;
hé

be

return new PropertyDescriptor[] { ageDescriptor };

catch (Introspecti onException ex) {
throw new Error(ex.toString());
}

5.4.2.1. Registering additional custom PropertyEditors

When setting bean properties as a string value, a Spring 10C container ultimately uses standard JavaBeans
Proper t yEdi t or s t0 convert these Strings to the complex type of the property. Spring pre-registers a number of
custom Propert yEdi t or s (for example, to convert a classname expressed as a string into areal d ass object).
Additionally, Java's standard JavaBeans Pr opert yEdi t or lookup mechanism allows a Propert yEdi tor for a
class simply to be named appropriately and placed in the same package as the class it provides support for, to
be found automatically.

If there is a need to register other custom Pr oper t yEdi t or s, there are several mechanisms available. The most
manual approach, which is not normally convenient or recommended, is to simply use the
regi ster Custonkdi tor () method of the Configurabl eBeanFactory interface, assuming you have a
BeanFact ory reference. The more convenient mechanism is to use a specia bean factory post-processor called
Cust onEdi t or Confi gurer. Although bean factory post-processors can be used semi-manualy with
BeanFact ory implementations, this one has a nested property setup, so it is strongly recommended that it is
used with the Appli cati onCont ext, where it may be deployed in similar fashion to any other bean, and
automatically detected and applied.

Note that al bean factories and application contexts automatically use a number of built-in property editors,
through their use of something called a Beanw apper to handle property conversions. The standard property
editors that the Beanw apper registers are listed in the previous section. Additionally, Appli cati onCont ext s
also override or add an additional number of editors to handle resource lookups in a manner appropriate to the
specific application context type.

Standard JavaBeans Pr oper t yEdi t or instances are used to convert property values expressed as strings to the
actual complex type of the property. cust onEdi t or Conf i gur er, & bean factory post-processor, may be used to
conveniently add support for additional Propert yEdi t or instancesto an Appl i cat i onCont ext .

Consider a user class Exot i cType, and another class DependsnExot i cType Which needs Exot i cType Set as a
property:

package exanpl e;

Spring Framework (2.0.6) 101

Validation, Data-binding, the Beanw apper , and

public class ExoticType {
private String naneg;

public ExoticType(String name) {
thi s. name = nang;

}
}

public class DependsOnExoti cType {
private ExoticType type;

public void set Type(ExoticType type) {
this.type = type;
}

When things are properly set up, we want to be able to assign the type property as a string, which a

Proper t yEdi t or Will behind the scenes convert into areal Exot i cType oObject:

<bean i d="sanpl e" cl ass="exanpl e. DependsOnExoti cType" >
<property name="type" val ue="aNanmeFor Exoti cType"/>
</ bean>

The Proper t yEdi t or implementation could ook similar to this:

// converts string representation to ExoticType Obj ect
package exanpl e;

public class ExoticTypeEditor extends PropertyEditorSupport {
private String format;

public void setFormat(String format) {
this.format = format;

}
public void set AsText(String text) {
if (format != null && format.equal s("upperCase")) {
text = text.toUpperCase();
}
Exoti cType type = new ExoticType(text);
set Val ue(type);
}

Finally, we use cust onEdi t or Conf i gur er to register the new Propert yEdi t or With the Appl i cati onCont ext,

which will then be able to use it as needed:

<bean i d="cust onEdi t or Confi gurer"

cl ass="org. spri ngframewor k. beans. fact ory. confi g. Cust onkdi t or Confi gurer" >

<property name="cust onkditors">
<map>
<entry key="exanpl e. Exoti cType">
<bean cl ass="exanpl e. Exoti cTypeEdi t or" >
<property nanme="format" val ue="upper Case"/ >
</ bean>
</entry>
</ map>
</ property>
</ bean>

Spring Framework (2.0.6)

102

Chapter 6. Aspect Oriented Programming with
Spring

6.1. Introduction

Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by providing
another way of thinking about program structure. In addition to classes, AOP gives you aspects. Aspects enable
modularization of concerns such as transaction management that cut across multiple types and objects. (Such
concerns are often termed crosscutting concerns.)

One of the key components of Spring is the AOP framework. While the Spring 10C container does not depend
on AOP, meaning you don't need to use AOP if you don't want to, AOP complements Spring 1oC to provide a
very capable middleware solution.

Spring 2.0 AOP

Spring 2.0 introduces a simpler and more powerful way of writing custom aspects using either a
schemarbased approach or the @A spectJ annotation style. Both of these styles offer fully typed advice
and use of the AspectJ pointcut language, while still using Spring AOP for weaving.

The Spring 2.0 schema and @A spectJ based AOP support is discussed in this chapter. Spring 2.0 AOP
remains fully backwards compatible with Spring 1.2 AOP, and the lower-level AOP support offered by
the Spring 1.2 APIsis discussed in the following chapter.

AOP isused in the Spring Framework:

« To provide declarative enterprise services, especially as areplacement for EJB declarative services. The most
important such service is declarative transaction management, which builds on the Spring Framework's
transaction abstraction.

e Toalow usersto implement custom aspects, complementing their use of OOP with AOP.
If you are interested only in generic declarative services or other pre-packaged declarative middleware
services such as pooling, you don't need to work directly with Soring AOP, and can skip most of this chapter.

6.1.1. AOP concepts

Let us begin by defining some central AOP concepts. These terms are not Spring-specific. Unfortunately, AOP
terminology is not particularly intuitive; however, it would be even more confusing if Spring used its own
terminology.

e Aspect: A modularization of a concern that cuts across multiple objects. Transaction management is a good
example of a crosscutting concern in J2EE applications. In Spring AOP, aspects are implemented using
regular classes (the schemabased approach) or regular classes annotated with the @spect annotation
(@rspect J style).

« Join point: A point during the execution of a program, such as the execution of a method or the handling of
an exception. In Spring AOP, a join point always represents a method execution. Join point information is

Spring Framework (2.0.6) 103

Aspect Oriented Programming with Spring

available in advice bodies by declaring a parameter of type or g. aspectj . | ang. Joi nPoi nt .

e Advice: Action taken by an aspect at a particular join point. Different types of advice include "around,"
"before" and "after" advice. Advice types are discussed below. Many AOP frameworks, including Spring,
model an advice as an interceptor, maintaining a chain of interceptors "around” the join point.

e Pointcut: A predicate that matches join points. Advice is associated with a pointcut expression and runs at
any join point matched by the pointcut (for example, the execution of a method with a certain name). The
concept of join points as matched by pointcut expressions is central to AOP: Spring uses the AspectJ
pointcut language by default.

* Introduction: (Also known as an inter-type declaration). Declaring additional methods or fields on behalf of a
type. Spring AOP alows you to introduce new interfaces (and a corresponding implementation) to any
proxied object. For example, you could use an introduction to make a bean implement an 1 sMdi fi ed
interface, to simplify caching.

e Target object: Object being advised by one or more aspects. Also referred to as the advised object. Since
Spring AOP isimplemented using runtime proxies, this object will always be a proxied object.

* AOP proxy: An object created by the AOP framework in order to implement the aspect contracts (advise
method executions and so on). In the Spring Framework, an AOP proxy will be a JDK dynamic proxy or a
CGLIB proxy. Proxy creation is transparent to users of the schema-based and @AspectJ styles of aspect
declaration introduced in Spring 2.0.

» Weaving: Linking aspects with other application types or objects to create an advised object. This can be
done at compile time (using the AspectJ compiler, for example), load time, or at runtime. Spring AOP, like
other pure Java AOP frameworks, performs weaving at runtime.

Types of advice:

« Before advice: Advice that executes before a join point, but which does not have the ability to prevent
execution flow proceeding to the join point (unlessit throws an exception).

 After returning advice: Advice to be executed after ajoin point completes normally: for example, if a method
returns without throwing an exception.

 After throwing advice: Advice to be executed if a method exits by throwing an exception.

« After (finally) advice: Advice to be executed regardliess of the means by which ajoin point exits (normal or
exceptiona return).

e Around advice: Advice that surrounds a join point such as a method invocation. This is the most powerful
kind of advice. Around advice can perform custom behavior before and after the method invocation. It isaso
responsible for choosing whether to proceed to the join point or to shortcut the advised method execution by
returning its own return value or throwing an exception.

Around advice is the most general kind of advice. Since Spring AOP, like Aspect], provides a full range of
advice types, we recommend that you use the least powerful advice type that can implement the required
behavior. For example, if you need only to update a cache with the return value of a method, you are better off
implementing an after returning advice than an around advice, although an around advice can accomplish the
same thing. Using the most specific advice type provides a simpler programming model with less potential for
errors. For example, you do not need to invoke the proceed() method on the Joi nPoi nt used for around
advice, and hence cannot fail to invoke it.

Spring Framework (2.0.6) 104

Aspect Oriented Programming with Spring

In Spring 2.0, al advice parameters are statically typed, so that you work with advice parameters of the
appropriate type (the type of the return value from a method execution for example) rather than j ect arrays.

The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from older
technologies offering only interception. Pointcuts enable advice to be targeted independently of the
Object-Oriented hierarchy. For example, an around advice providing declarative transaction management can
be applied to a set of methods spanning multiple objects (such as all business operations in the service layer).

6.1.2. Spring AOP capabilities and goals

Spring AOP isimplemented in pure Java. There is no need for a special compilation process. Spring AOP does
not need to control the class loader hierarchy, and is thus suitable for use in a J2EE web container or
application server.

Spring AOP currently supports only method execution join points (advising the execution of methods on Spring
beans). Field interception is not implemented, although support for field interception could be added without
breaking the core Spring AOP APIs. If you need to advise field access and update join points, consider a
language such as AspectJ.

Spring AOP's approach to AOP differs from that of most other AOP frameworks. The aim is not to provide the
most complete AOP implementation (although Spring AOP is quite capable); it is rather to provide a close
integration between AOP implementation and Spring 1oC to help solve common problems in enterprise
applications.

Thus, for example, the Spring Framework's AOP functionality is normally used in conjunction with the Spring
loC container. Aspects are configured using normal bean definition syntax (although this allows powerful
"autoproxying" capabilities): this is a crucia difference from other AOP implementations. There are some
things you cannot do easily or efficiently with Spring AOP, such as advise very fine-grained objects: AspectJis
the best choice in such cases. However, our experience is that Spring AOP provides an excellent solution to
most problems in J2EE applications that are amenable to AOP.

Spring AOP will never strive to compete with AspectJ to provide a comprehensive AOP solution. We believe
that both proxy-based frameworks like Spring AOP and full-blown frameworks such as Aspect] are valuable,
and that they are complementary, rather than in competition. Spring 2.0 seamlessly integrates Spring AOP and
loC with AspectJ, to enable all uses of AOP to be catered for within a consistent Spring-based application
architecture. This integration does not affect the Spring AOP API or the AOP Alliance API: Spring AOP
remains backward-compatible. See the following chapter for a discussion of the Spring AOP APIs.

Note
e

One of the central tenets of the Spring Framework is that of non-invasiveness, this is the idea that
you should not be forced to introduce framework-specific classes and interfaces into your
business/domain model. However, in some places the Spring Framework does give you the option
to introduce Spring Framework-specific dependencies into your codebase: the rationale in giving
you such options is because in certain scenarios it might be just plain easier to read or code some
specific piece of functionality in such away. The Spring Framework (almost) always offers you the
choice though: you have the freedom to make an informed decision as to which option best suits
your particular use case or scenario.

One such choice that is relevant to this chapter is that of which AOP framework (and which AOP
style) to choose. Y ou have the choice of Aspectd and/or Spring AOP, and you aso have the choice
of either the @A spectJ annotation-style approach or the Spring XML configuration-style approach.
The fact that this chapter chooses to introduce the @AspectJ-style approach first should not be

Spring Framework (2.0.6) 105

Aspect Oriented Programming with Spring

taken as an indication that the Spring team favors the @A spectJ annotation-style approach over the
Spring XML configuration-style.

See the section entitled Section 6.4, “Choosing which AOP declaration style to use” for a fuller
discussion of the whys and wherefores of each style.

6.1.3. AOP Proxies

Spring AOP defaults to using standard J2SE dynamic proxies for AOP proxies. This enables any interface (or
set of interfaces) to be proxied.

Spring AOP can aso use CGLIB proxies. This is necessary to proxy classes, rather than interfaces. CGLIB is
used by default if a business object does not implement an interface. As it is good practice to program to
interfaces rather than classes, business classes normally will implement one or more business interfaces. It is
possible to force the use of CGLIB [131], in those (hopefully rare) cases where you need to advise a method that
is not declared on an interface, or where you need to pass a proxied object to a method as a concrete type.

It is important to grasp the fact that Spring AOP is proxy-based. See the section entitled Section 6.6.1,
“Understanding AOP proxies’ for a thorough examination of exactly what this implementation detail actually
means.

6.2. @Aspect] support

@A spect] refers to a style of declaring aspects as regular Java classes annotated with Java 5 annotations. The
@A spect] style was introduced by the AspectJ project as part of the Aspectd 5 release. Spring 2.0 interprets the
same annotations as Aspectd 5, using a library supplied by Aspect] for pointcut parsing and matching. The
AOP runtimeisstill pure Spring AOP though, and there is no dependency on the AspectJ compiler or weaver.

Using the Aspectd compiler and weaver enables use of the full Aspect] language, and is discussed in
Section 6.8, “ Using AspectJ with Spring applications” .

6.2.1. Enabling @AspectJ Support

To use @A spectJ aspects in a Spring configuration you need to enable Spring support for configuring Spring
AOP based on @A spectJ aspects, and autoproxying beans based on whether or not they are advised by those
aspects. By autoproxying we mean that if Spring determines that a bean is advised by one or more aspects, it
will automatically generate a proxy for that bean to intercept method invocations and ensure that advice is
executed as needed.

The @A spectJ support is enabled by including the following element inside your spring configuration:

<aop: aspect j - aut opr oxy/ >
This assumes that you are using schema support as described in Appendix A, XML Schema-based
configuration. See Section A.2.6, “ The aop schema’ for how to import the tags in the aop namespace.

If you are using the DTD, it is still possible to enable @A spectJ support by adding the following definition to
your application context:

<bean cl ass="org. spri ngfranmewor k. aop. aspectj . annot ati on. Annot at i onAwar eAspect JAut oPr oxyCreator" />

Spring Framework (2.0.6) 106

http://www.eclipse.org/aspectj

Aspect Oriented Programming with Spring

You will aso need two Aspect] libraries on the classpath of your application: aspectjweaver.jar and
aspectjrt.jar. Theselibraries are availableinthe' I'i b' directory of an Aspect]installation (version 1.5.1 or
later required), or inthe' I'i b/ aspectj ' directory of the Spring-with-dependencies distribution.

6.2.2. Declaring an aspect

With the @AspectJ support enabled, any bean defined in your application context with a class that is an
@A spectJ aspect (has the @xspect annotation) will be automatically detected by Spring and used to configure
Spring AOP. The following example shows the minimal definition required for a not-very-useful aspect:

A regular bean definition in the application context, pointing to a bean class that has the @spect annotation:

<bean i d="nyAspect" cl ass="org.xyz. Not Ver yUsef ul Aspect ">
<l-- configure properties of aspect here as normal -->
</ bean>

And the Not VeryUseful Aspect class definition, annotated with org. aspectj .| ang. annot ati on. Aspect
annotation;

package org. xyz;
i mport org.aspectj .| ang.annotation. Aspect;

@\spect
public class Not VeryUseful Aspect {

}

Aspects (classes annotated with @spect) may have methods and fields just like any other class. They may also
contain pointcut, advice, and introduction (inter-type) declarations.

Advising aspects

e
In Spring AORP, it is not possible to have aspects themselves be the target of advice from other
aspects. The @Aspect annotation on a class marks it as an aspect, and hence excludes it from
auto-proxying.

6.2.3. Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control when advice executes.
Soring AOP only supports method execution join points for Soring beans, so you can think of a pointcut as
matching the execution of methods on Spring beans. A pointcut declaration has two parts: a signature
comprising a name and any parameters, and a pointcut expression that determines exactly which method
executions we are interested in. In the @A spectJ annotation-style of AOP, a pointcut signature is provided by a
regular method definition, and the pointcut expression is indicated using the @oi nt cut annotation (the method
serving as the pointcut signature must have avoi d return type).

An example will help make this distinction between a pointcut signature and a pointcut expression clear. The
following example defines a pointcut named ' anyd dTransfer' that will match the execution of any method
named' transfer':

@Poi ntcut ("execution(* transfer(..))")// the pointcut expression
private void anyd dTransfer() {}// the pointcut signature

Spring Framework (2.0.6) 107

Aspect Oriented Programming with Spring

The pointcut expression that forms the value of the @oi nt cut annotation is a regular AspectJ 5 pointcut
expression. For a full discussion of AspectJ's pointcut language, see the AspectJ Programming Guide (and for
Java 5 based extensions, the AspectJ 5 Developers Notebook) or one of the books on AspectJ such as “Eclipse
Aspect’ by Colyer et. al. or “AspectJin Action” by Ramnivas Laddad.

6.2.3.1. Supported Pointcut Designators

Spring AOP supports the following A spectJ pointcut designators for use in pointcut expressions:

Other pointcut types

The full Aspectd pointcut language supports additional pointcut designators that are not supported in
Spring. These are: cal |, initialization, preinitialization, staticinitialization, get, set,
handl er, advi ceexecution, w thincode, cflow, cflowbelow, if, @his,and@ithincode. Use of
these pointcut designators in pointcut expressions interpreted by Spring AOP will result in an
I'I'I egal Argunent Except i on being thrown.

The set of pointcut designators supported by Spring AOP may be extended in future releases both to
support more of the Aspectd pointcut designators (e.g. "if"), and potentialy to support Spring specific
designators such as "bean" (matching on bean name).

» execution - for matching method execution join points, this is the primary pointcut designator you will use
when working with Spring AOP

 within - limits matching to join points within certain types (simply the execution of a method declared within
amatching type when using Spring AOP)

« this - limits matching to join points (the execution of methods when using Spring AOP) where the bean
reference (Spring AOP proxy) is an instance of the given type

« target - limits matching to join points (the execution of methods when using Spring AOP) where the target
object (application object being proxied) is an instance of the given type

e args - limits matching to join points (the execution of methods when using Spring AOP) where the
arguments are instances of the given types

e @arget - limits matching to join points (the execution of methods when using Spring AOP) where the class
of the executing object has an annotation of the given type

e @rgs - limits matching to join points (the execution of methods when using Spring AOP) where the runtime
type of the actual arguments passed have annotations of the given type(s)

e @ithin - limits matching to join points within types that have the given annotation (the execution of
methods declared in types with the given annotation when using Spring AOP)

e @annotation - limits matching to join points where the subject of the join point (method being executed in
Spring AOP) has the given annotation

Because Spring AOP limits matching to only method execution join points, the discussion of the pointcut

designators above gives a narrower definition than you will find in the Aspectd programming guide. In

addition, Aspect] itself has type-based semantics and at an execution join point both 'this' and 'target’ refer to

the same object - the object executing the method. Spring AOP is a proxy based system and differentiates

between the proxy object itself (bound to 'this) and the target object behind the proxy (bound to 'target’).

Spring Framework (2.0.6) 108

http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html

Aspect Oriented Programming with Spring

6.2.3.2. Combining pointcut expressions

Pointcut expressions can be combined using '& &', '||' and " It is also possible to refer to pointcut expressions
by name. The following example shows three pointcut expressions: anyPubl i cQper at i on (which matches if a
method execution join point represents the execution of any public method); i nTr adi ng (which matches if a
method execution is in the trading module), and t r adi ngQper ati on (which matches if a method execution
represents any public method in the trading module).

@oi nt cut ("execution(public * *(.

)
private void anyPublicQOperation() {}

@Poi ntcut ("wi thin(com xyz. soneapp. tradi ng..*")
private void inTrading() {}

@Poi nt cut ("anyPubl i cOperation() && inTrading()")
private void tradi ngOperation() {}

It is a best practice to build more complex pointcut expressions out of smaller named components as shown
above. When referring to pointcuts by name, normal Javavisibility rules apply (you can see private pointcutsin
the same type, protected pointcuts in the hierarchy, public pointcuts anywhere and so on). Visibility does not
affect pointcut matching.

6.2.3.3. Sharing common pointcut definitions

When working with enterprise applications, you often want to refer to modules of the application and particular
sets of operations from within several aspects. We recommend defining a "SystemArchitecture” aspect that
captures common pointcut expressions for this purpose. A typical such aspect would look as follows:

package com xyz. soneapp

i nport org.aspectj .| ang. annot ati on. Aspect;
i mport org.aspectj .| ang.annotati on. Poi ntcut;

@\spect
public class SystemArchitecture {

/**

* Ajoin point is in the web layer if the method is defined

* in a type in the com xyz. sonmeapp. web package or any sub- package
* under that.

*/

@Poi ntcut ("within(com xyz. sonmeapp. web. . *)")

public void i nWebLayer () {}

/**
* Ajoin point is in the service layer if the method is defined
* in a type in the comxyz. someapp. servi ce package or any sub-package
* under that.
*/
@Poi ntcut ("wi thin(com xyz. soneapp. service..*)")
public void inServiceLayer() {}

/**
* Ajoin point is in the data access layer if the nethod is defined
* in a type in the comxyz. soneapp. dao package or any sub-package
* under that.
*/
@poi nt cut ("wi t hi n(com xyz. soneapp. dao. . *)")
public void inDataAccesslLayer() {}

*

/
A business service is the execution of any method defined on a service
interface. This definition assunes that interfaces are placed in the
"service" package, and that inplenmentation types are in sub-packages.

If you group service interfaces by functional area (for exanple,
i n packages com xyz. soneapp. abc. servi ce and com xyz. def. service) then
the poi ntcut expression "execution(* com xyz.soneapp..service.*.*(..))"

E I A

Spring Framework (2.0.6) 109

Aspect Oriented Programming with Spring

* coul d be used instead

*/

@Poi nt cut ("execution(* com xyz.sonmeapp.service.*.*(..))")
public void businessService() {}

/**

* A data access operation is the execution of any nethod defined on a

* dao interface. This definition assunmes that interfaces are placed in the
* "dao" package, and that inplenmentation types are in sub-packages

*/

@Poi nt cut ("execution(* com xyz.soneapp.dao.*.*(..))")

public void dataAccessOperation() {}

The pointcuts defined in such an aspect can be referred to anywhere that you need a pointcut expression. For
example, to make the service layer transactional, you could write:

<aop: confi g>
<aop: advi sor
poi nt cut =" com xyz. soneapp. Syst emAr chi t ect ur e. busi nessSer vi ce()"
advi ce-ref ="t x-advi ce"/>
</ aop: confi g>

<t x: advi ce id="tx-advice">
<tx:attributes>
<t x: met hod name="*" propagati on="REQU RED"/ >
</tx:attributes>
</t x: advi ce>

The <aop: confi g> and <aop: advi sor > tags are discussed in the section entitled Section 6.3, “ Schema-based
AOP support”. The transaction tags are discussed in the chapter entitled Chapter 9, Transaction management.

6.2.3.4. Examples

Spring AOP users are likely to use the execution pointcut designator the most often. The format of an
execution expression is:

execution(nodifiers-pattern? ret-type-pattern decl aring-type-pattern? nane-pattern(param pattern)
t hrows- pattern?)

All parts except the returning type pattern (ret-type-pattern in the snippet above), name pattern, and parameters
pattern are optional. The returning type pattern determines what the return type of the method must be in order
for ajoin point to be matched. Most frequently you will use * as the returning type pattern, which matches any
return type. A fully-qualified type name will match only when the method returns the given type. The name
pattern matches the method name. Y ou can use the * wildcard as all or part of a name pattern. The parameters
pattern is sightly more complex: () matches a method that takes no parameters, whereas (..) matches any
number of parameters (zero or more). The pattern (*) matches a method taking one parameter of any type,
(*, string) matches a method taking two parameters, the first can be of any type, the second must be a String.
Consult the Language Semantics section of the AspectJ Programming Guide for more information.

Some examples of common pointcut expressions are given below.

* the execution of any public method:

execution(public * *(..))

« the execution of any method with a name beginning with "set":

execution(* set*(..))

Spring Framework (2.0.6) 110

http://www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html

Aspect Oriented Programming with Spring

the execution of any method defined by the Account Ser vi ce interface:

execution(* com xyz. service. Account Service. *(..))

the execution of any method defined in the service package:

execution(* com xyz.service.*.*(..))

the execution of any method defined in the service package or a sub-package:

execution(* com xyz.service..*.*(..))

any join point (method execution only in Spring AOP) within the service package:

wi t hi n(com xyz. service. *)

any join point (method execution only in Spring AOP) within the service package or a sub-package:

Wi t hi n(com xyz. service..*)

any join point (method execution only in Spring AOP) where the proxy implements the Account Servi ce
interface:

t hi s(com xyz. servi ce. Account Servi ce)

'this’ is more commonly used in a binding form :- see the following section on advice for how to make the
proxy object available in the advice body.

any join point (method execution only in Spring AOP) where the target object implements the
Account Ser vi ce interface:

target (com xyz. servi ce. Account Ser vi ce)

'target' is more commonly used in a binding form :- see the following section on advice for how to make the
target object available in the advice body.

any join point (method execution only in Spring AOP) which takes a single parameter, and where the
argument passed at runtimeisSeri al i zabl e:

args(java.io. Serializable)

‘args' is more commonly used in a binding form :- see the following section on advice for how to make the
method arguments available in the advice body.

Note that the pointcut given in this example is different to execution(* *(java.io. Serializable)): the
args version matches if the argument passed at runtime is Serializable, the execution version matches if the
method signature declares a single parameter of type Seri al i zabl e.

any join point (method execution only in Spring AOP) where the target object has an @ransacti onal
annotation:

@ ar get (org. springfranework.transaction. annot ati on. Transacti onal)

'@target' can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

Spring Framework (2.0.6) 111

Aspect Oriented Programming with Spring

e any join point (method execution only in Spring AOP) where the declared type of the target object has an
@r ansact i onal annotation:

@i t hi n(org. springfranework.transaction. annot ati on. Transacti onal)

‘@within' can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) where the executing method has an @r ansact i onal
annotation:

@nnot ati on(org. springfranework. transaction. annot ati on. Transacti onal)

‘@annotation’ can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) which takes a single parameter, and where the
runtime type of the argument passed has the @ assi f i ed annotation:

@rgs(com xyz.security. d assified)

'@args can also be used in a binding form :- see the following section on advice for how to make the
annotation object(s) available in the advice body.

6.2.4. Declaring advice

Advice is associated with a pointcut expression, and runs before, after, or around method executions matched
by the pointcut. The pointcut expression may be either a simple reference to a named pointcut, or a pointcut
expression declared in place.

6.2.4.1. Before advice

Before adviceis declared in an aspect using the @ef or e annotation:

i mport org.aspectj.|ang.annotation. Aspect;
i nport org.aspectj .| ang. annot ati on. Bef ore;

@\spect
public class BeforeExanple {

@ef ore("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doAccessCheck() {
...

}

If using an in-place pointcut expression we could rewrite the above example as:

i nport org.aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotation. Before;

@\spect
public cl ass BeforeExanpl e {

@Bef ore("execution(* com xyz. nyapp.dao.*.*(..))")
public void doAccessCheck() {
...

}

Spring Framework (2.0.6) 112

Aspect Oriented Programming with Spring

6.2.4.2. After returning advice

After returning advice runs when a matched method execution returns normally. It is declared using the
@\f t er Ret ur ni ng annotation:

i nport org.aspectj .| ang. annot ati on. Aspect ;
i nport org.aspectj .| ang. annot ati on. Aft er Ret ur ni ng;

@\spect
public class AfterReturni ngExanpl e {

@Af t er Ret ur ni ng("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doAccessCheck() {
...

}
}

Note: it is of course possible to have multiple advice declarations, and other members as well, all inside the
same aspect. We're just showing a single advice declaration in these examples to focus on the issue under
discussion at the time.

Sometimes you need access in the advice body to the actual value that was returned. Y ou can use the form of
@\ t er Ret ur ni ng that binds the return value for this:

i nport org.aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotation. AfterReturning;

@\spect
public class AfterReturni ngExanpl e {

@Af t er Ret ur ni ng(
poi nt cut ="com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessQperation()",
returni ng="retVal")

public void doAccessCheck(oject retVal) {
A

}

The name used in the r et ur ni ng attribute must correspond to the name of a parameter in the advice method.
When a method execution returns, the return value will be passed to the advice method as the corresponding
argument value. A r et ur ni ng clause also restricts matching to only those method executions that return avalue
of the specified type (avj ect in this case, which will match any return value).

Please note that it is not possible to return atotally different reference when using after-returning advice.

6.2.4.3. After throwing advice

After throwing advice runs when a matched method execution exits by throwing an exception. It is declared
using the @ t er Thr owi ng annotation:

i mport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.|ang.annot ati on. After Thr owi ng;

@\spect
public class AfterThrow ngExanpl e {

@Af t er Thr owi ng("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doRecoveryActions() {
...

}

Spring Framework (2.0.6) 113

Aspect Oriented Programming with Spring

Often you want the advice to run only when exceptions of a given type are thrown, and you also often need
access to the thrown exception in the advice body. Use the t hr owi ng attribute to both restrict matching (if
desired, use Thr owabl e asthe exception type otherwise) and bind the thrown exception to an advice parameter.

i nport org.aspectj .| ang. annot ati on. Aspect;
i mport org.aspectj.|ang.annotation. Aft er Thr owi ng;

@\spect
public class AfterThrow ngExanpl e {

@Af t er Thr owi ng(
poi nt cut ="com xyz. myapp. Syst emAr chi t ect ur e. dat aAccessQOperation()",
t hr owi ng="ex")

public void doRecoveryActi ons(Dat aAccessException ex) {
...

}

The name used in the t hr owi ng attribute must correspond to the name of a parameter in the advice method.
When a method execution exits by throwing an exception, the exception will be passed to the advice method as
the corresponding argument value. A t hr owi ng clause also restricts matching to only those method executions
that throw an exception of the specified type (Dat aAccessExcept i on in this case).

6.2.4.4. After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the @fter
annotation. After advice must be prepared to handle both normal and exception return conditions. It istypically
used for releasing resources, etc.

i nport org. aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.lang.annotation. After;

@\spect
public class AfterFinallyExanmple {

@\fter("comxyz. myapp. Syst emAr chi t ect ure. dat aAccessOperation()")
public void doRel easeLock() {
1.

}

6.2.4.5. Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution. It has the
opportunity to do work both before and after the method executes, and to determine when, how, and even if, the
method actually gets to execute at all. Around advice is often used if you need to share state before and after a
method execution in a thread-safe manner (starting and stopping a timer for example). Always use the least
powerful form of advice that meets your requirements (i.e. don't use around advice if simple before advice
would do).

Around advice is declared using the @vr ound annotation. The first parameter of the advice method must be of
type Proceedi ngJoi nPoi nt . Within the body of the advice, calling proceed() on the Proceedi ngJoi nPoi nt
causes the underlying method to execute. The pr oceed method may also be called passing in an tvj ect[] - the
valuesin the array will be used as the arguments to the method execution when it proceeds.

The behavior of proceed when called with an oj ect[] is a little different than the behavior of proceed for
around advice compiled by the Aspectd compiler. For around advice written using the traditional AspectJ
language, the number of arguments passed to proceed must match the number of arguments passed to the
around advice (not the number of arguments taken by the underlying join point), and the value passed to

Spring Framework (2.0.6) 114

Aspect Oriented Programming with Spring

proceed in a given argument position supplants the original value at the join point for the entity the value was
bound to. (Don't worry if this doesn't make sense right now!) The approach taken by Spring is simpler and a
better match to its proxy-based, execution only semantics. You only need to be aware of this difference if you
compiling @Aspect] aspects written for Soring and using proceed with arguments with the AspectJ compiler
and weaver. There is a way to write such aspects that is 100% compatible across both Soring AOP and
AspectJ, and thisis discussed in the following section on advice parameters.

i mport org.aspectj.|ang.annotation. Aspect;
i nport org.aspectj .| ang. annot ati on. Ar ound;
i mport org. aspectj .| ang. Proceedi ngJoi nPoi nt ;

@\spect
public class AroundExanpl e {

@\r ound(" com xyz. nyapp. Syst emAr chi t ect ur e. busi nessService()")
public nject doBasicProfiling(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
/] start stopwatch
oj ect retVal = pjp.proceed();
/] stop stopwatch
return retVal;

}

The value returned by the around advice will be the return value seen by the caller of the method. A simple
caching aspect for example could return a value from a cache if it has one, and invoke proceed() if it does not.
Note that proceed may be invoked once, many times, or not at all within the body of the around advice, al of
these are quite legal.

6.2.4.6. Advice parameters

Spring 2.0 offers fully typed advice - meaning that you declare the parameters you need in the advice signature
(aswe saw for the returning and throwing examples above) rather than work with avj ect [] arraysall the time.
Well see how to make argument and other contextual values available to the advice body in a moment. First
let's take a look at how to write generic advice that can find out about the method the advice is currently
advising.

6.2.4.6.1. Access to the current Joi nPoi nt

Any advice method may declare as its first parameter, a parameter of type org. aspect]j . | ang. Joi nPoi nt
(please note that around advice is required to declare a first parameter of type Pr oceedi ngJoi nPoi nt , which is
a subclass of Joi nPoi nt. The Joi nPoi nt interface provides a number of useful methods such as get Args()
(returns the method arguments), get Thi s() (returns the proxy object), get Tar get () (returns the target object),
get Si gnature() (returns a description of the method that is being advised) and t oSt ri ng() (prints a useful
description of the method being advised). Please do consult the Javadocs for full details.

6.2.4.6.2. Passing parameters to advice

We've aready seen how to bind the returned value or exception value (using after returning and after throwing
advice). To make argument values available to the advice body, you can use the binding form of args. If a
parameter name is used in place of a type name in an args expression, then the value of the corresponding
argument will be passed as the parameter value when the advice is invoked. An example should make this
clearer. Suppose you want to advise the execution of dao operations that take an Account object as the first
parameter, and you need access to the account in the advice body. Y ou could write the following:

@Bef ore("com xyz. nyapp. Syst emAr chi t ect ure. dat aAccessOperation() &&' +
"args(account,..)")
public void validateAccount (Account account) {
...

}

Spring Framework (2.0.6) 115

Aspect Oriented Programming with Spring

Theargs(account, ..) part of the pointcut expression serves two purposes. firstly, it restricts matching to only
those method executions where the method takes at least one parameter, and the argument passed to that
parameter is an instance of Account ; secondly, it makes the actual Account object available to the advice via
the account parameter.

Another way of writing thisis to declare a pointcut that "provides' the Account object value when it matches a
join point, and then just refer to the named pointcut from the advice. Thiswould look as follows:

@Poi nt cut ("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessQperation() &&"' +
"args(account,..)")
private voi d account Dat aAccessOper ati on(Account account) {}

@Bef or e("account Dat aAccessOper ati on(account) ")
public void validateAccount (Account account) {
...

}

The interested reader is once more referred to the Aspect] programming guide for more details.

The proxy object (i hi s), target object (t ar get), and annotations (@ thin, @arget, @nnotation, @rgs)
can all be bound in a similar fashion. The following example shows how you could match the execution of
methods annotated with an @udi t abl e annotation, and extract the audit code.

First the definition of the @udi t abl e annotation:

@Ret ent i on(Ret enti onPol i cy. RUNTI ME)
@rar get (El enent Type. METHOD)
public @nterface Auditable {
Audi t Code val ue();
}

And then the advice that matches the execution of @udi t abl e methods:

@efore("com xyz. |ib. Poi ntcuts. anyPubl i cMet hod() && " +
"@nnot ati on(audi table)")
public void audit(Auditable auditable) {
Audi t Code code = auditabl e. val ue();
...

}

6.2.4.6.3. Determining argument names

The parameter binding in advice invocations relies on matching names used in pointcut expressions to declared
parameter names in (advice and pointcut) method signatures. Parameter names are not available through Java
reflection, so Spring AOP uses the following strategies to determine parameter names:

1. If the parameter names have been specified by the user explicitly, then the specified parameter names are
used: both the advice and the pointcut annotations have an optional "argNames" attribute which can be used
to specify the argument names of the annotated method - these argument names are available at runtime. For
example:

@Bef or e(
val ue="com xyz. | i b. Poi nt cuts. anyPubl i cMet hod() && @nnot ati on(auditable)",
ar gNanes="audi t abl e")
public void audit(Auditable auditable) {
Audi t Code code = auditabl e.val ue();
...

}

If an @Aspect] aspect has been compiled by the Aspect] compiler (ajc) then there is no need to add the

Spring Framework (2.0.6) 116

Aspect Oriented Programming with Spring

ar gNanes attribute as the compiler will do this automatically.

2. Using the' argNanes' attribute is alittle clumsy, so if the' ar gNanes' attribute has not been specified, then
Spring AOP will look at the debug information for the class and try to determine the parameter names from
the local variable table. This information will be present as long as the classes have been compiled with
debug information (' -g: vars' a a minimum). The consequences of compiling with this flag on are: (1)
your code will be slightly easier to understand (reverse engineer), (2) the classfile sizes will be very slightly
bigger (typicaly inconsequential), (3) the optimization to remove unused local variables will not be applied
by your compiler. In other words, you should encounter no difficulties building with this flag on.

3. If the code has been compiled without the necessary debug information, then Spring AOP will attempt to
deduce the pairing of binding variables to parameters (for example, if only one variable is bound in the
pointcut expression, and the advice method only takes one parameter, the pairing is obvious!). If the binding
of variables is ambiguous given the available information, then an Anbi guousBi ndi ngExcepti on will be
thrown.

4. If all of the above strategies fail then an 111 egal Ar gunent Except i on Will be thrown.

6.2.4.6.4. Proceeding with arguments

We remarked earlier that we would describe how to write a proceed call with arguments that works consistently
across Spring AOP and AspectJ. The solution is simply to ensure that the advice signature binds each of the
method parameters in order. For example:

@A ound(" execution(List<Account> find*(..)) &&" +
"com xyz. nyapp. SystemArchi t ect ure. i nDat aAccessLayer () && " +
"args(account Hol der NanePattern)")
public Onject preProcessQueryPattern(Proceedi ngJoi nPoint pjp, String account Hol der NanePat t er n)
throws Throwabl e {
String newPattern = preProcess(account Hol der NamePat t er n) ;
return pjp.proceed(new Object[] {newPattern});

}

In many cases you will be doing this binding anyway (as in the example above).

6.2.4.7. Advice ordering

What happens when multiple pieces of advice all want to run at the same join point? Spring AOP follows the
same precedence rules as Aspect] to determine the order of advice execution. The highest precedence advice
runs first "on the way in" (so given two pieces of before advice, the one with highest precedence runs first).
"On the way out" from ajoin point, the highest precedence advice runs last (so given two pieces of after advice,
the one with the highest precedence will run second).

When two pieces of advice defined in different aspects both need to run at the same join point, unless you
specify otherwise the order of execution is undefined. You can control the order of execution by specifying
precedence. This is done in the norma Spring way by either implementing the
org. springframewor k. core. Or der ed interface in the aspect class or annotating it with the o der annotation.
Given two aspects, the aspect returning the lower value from o der ed. get Val ue() (or the annotation value)
has the higher precedence.

When two pieces of advice defined in the same aspect both need to run at the same join point, the ordering is
undefined (since there is no way to retrieve the declaration order via reflection for javac-compiled classes).
Consider collapsing such advice methods into one advice method per joinpoint in each aspect class, or refactor
the pieces of advice into separate aspect classes - which can be ordered at the aspect level.

Spring Framework (2.0.6) 117

Aspect Oriented Programming with Spring

6.2.5. Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised objects
implement a given interface, and to provide an implementation of that interface on behalf of those objects.

An introduction is made using the @ecl areParents annotation. This annotation is used to declare that
matching types have a new parent (hence the name). For example, given an interface UsageTr acked, and an
implementation of that interface Def aul t UsageTr acked, the following aspect declares that all implementors of
service interfaces also implement the UsageTracked interface. (In order to expose statistics via IMX for
example.)

@\spect
public class UsageTracking {

@ecl ar ePar ent s(val ue="com xzy. nyapp. servi ce. *+",
def aul t | npl =Def aul t UsageTr acked. cl ass)
public static UsageTracked m Xxin;

@ef ore("com xyz. nyapp. Syst emArchi t ect ur e. busi nessServi ce() &&"' +
"t hi s(usageTracked)")
public void recordUsage(UsageTracked usageTracked) {
usageTr acked. i ncr enment UseCount () ;

}

The interface to be implemented is determined by the type of the annotated field. The val ue attribute of the
@ecl ar eParent s annotation is an AspectJ type pattern :- any bean of a matching type will implement the
UsageTracked interface. Note that in the before advice of the above example, service beans can be directly used
as implementations of the UsageTr acked interface. If accessing a bean programmatically you would write the
following:

UsageTr acked usageTracked = (UsageTracked) context.getBean("mnmyService");

6.2.6. Aspect instantiation models
(Thisis an advanced topic, so if you are just starting out with AOP you can safely skip it until later.)

By default there will be a single instance of each aspect within the application context. AspectJ calls this the
singleton instantiation model. It is possible to define aspects with alternate lifecycles :- Spring supports
AspectJs pert his and pertarget instantiation models (percfl ow, percflowbel ow, and pertypewithin are
not currently supported).

A "perthis' aspect is declared by specifying a perthis clause in the @spect annotation. Let's look at an
example, and then we'll explain how it works.

@\spect (" perthi s(com xyz. nyapp. Syst emAr chi t ect ur e. busi nessService())")
public class MyAspect {

private int soneState;

@Bef ore(com xyz. myapp. Syst emAr chi t ect ur e. busi nessServi ce())
public void recordServiceUsage() {
I

}

The effect of the ' perthis' clause is that one aspect instance will be created for each unique service object
executing a business service (each unique object bound to 'this at join points matched by the pointcut

Spring Framework (2.0.6) 118

Aspect Oriented Programming with Spring

expression). The aspect instance is created the first time that a method is invoked on the service object. The
aspect goes out of scope when the service object goes out of scope. Before the aspect instance is created, hone
of the advice within it executes. As soon as the aspect instance has been created, the advice declared within it
will execute at matched join points, but only when the service object is the one this aspect is associated with.
See the AspectJ programming guide for more information on per-clauses.

The' pertarget' instantiation model works in exactly the same way as perthis, but creates one aspect instance
for each unique target object at matched join points.

6.2.7. Example

Now that you have seen how all the constituent parts work, let's put them together to do something useful!

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock loser).
If the operation is retried, it is quite likely to succeed next time round. For business services where it is
appropriate to retry in such conditions (idempotent operations that don't need to go back to the user for conflict
resolution), wed like to transparently retry the operation to avoid the client seeing a
Pessi mi sti cLocki ngFai | ur eExcepti on. Thisis arequirement that clearly cuts across multiple servicesin the
service layer, and henceisideal for implementing via an aspect.

Because we want to retry the operation, we will need to use around advice so that we can call proceed multiple
times. Here's how the basic aspect implementation looks:

@\spect

public class Concurrent Operati onExecutor inplenments Ordered {
private static final int DEFAULT _MAX RETRIES = 2;

private int maxRetries = DEFAULT_MAX_ RETRI ES;
private int order = 1;

public void set MaxRetries(int nmaxRetries) {
this. maxRetries = maxRetri es;

}

public int getOder() {
return this.order;

}

public void setOder(int order) {
this.order = order;

}

@\r ound(" com xyz. nyapp. Syst emAr chi t ect ur e. busi nessServi ce()")
public Object doConcurrent Operation(Proceedi ngJoi nPoint pjp) throws Throwabl e {
int numAttenpts = O;
Pessi mi sti cLocki ngFai | ureException | ockFai |l ureExcepti on;
do {
numAt t enpt s++;
try {
return pjp.proceed();

cat ch(Pessi m sticLocki ngFai | ureException ex) {
| ockFai | ureException = ex;

}

whi | e(numAttenpts <= this. maxRetries);
t hrow | ockFai | ur eExcepti on;

Note that the aspect implements the o der ed interface so we can set the precedence of the aspect higher than
the transaction advice (we want a fresh transaction each time we retry). The naxRet ri es and or der properties
will both be configured by Spring. The main action happens in the doConcur rent Qper ati on around advice.

Spring Framework (2.0.6) 119

Aspect Oriented Programming with Spring

Notice that for the moment we're applying the retry logic to al busi nessServi ce()s. We try to proceed, and if
we fail with an Pessi i sti cLocki ngFai | ur eExcepti on we simply try again unless we have exhausted all of
our retry attempts.

The corresponding Spring configuration is:

<aop: aspect j - aut opr oxy/ >

<bean i d="concurrent Oper ati onExecut or"
cl ass="com xyz. nyapp. servi ce. i npl . Concurr ent Oper at i onExecut or ">
<property name="nmaxRetries" val ue="3"/>
<property name="order" val ue="100"/>
</ bean>

To refine the aspect so that it only retries idempotent operations, we might define an | denpot ent annotation:

@Ret ent i on(Ret enti onPol i cy. RUNTI MVE)
public @nterface |denpotent {
/'l marker annotation

}

and use the annotation to annotate the implementation of service operations. The change to the aspect to only
retry idempotent operations simply involves refining the pointcut expression so that only @ denpot ent
operations match:

@A\ ound(" com xyz. nyapp. Syst emAr chi t ect ure. busi nessService() && " +
"@nnot ati on(com xyz. nyapp. servi ce. | denpotent)")
public Object doConcurrent Operation(Proceedi ngJoi nPoint pjp) throws Throwabl e {

i

6.3. Schema-based AOP support

If you are unable to use Java 5, or simply prefer an XML-based format, then Spring 2.0 also offers support for
defining aspects using the new "aop" namespace tags. The exact same pointcut expressions and advice kinds
are supported as when using the @A spectJ style, hence in this section we will focus on the new syntax and refer
the reader to the discussion in the previous section (Section 6.2, “ @AspectJ support”) for an understanding of
writing pointcut expressions and the binding of advice parameters.

To use the aop namespace tags described in this section, you need to import the spring-aop schema as described
in Appendix A, XML Schema-based configuration. See Section A.2.6, “The aop schema” for how to import the
tags in the aop namespace.

Within your Spring configurations, all aspect and advisor elements must be placed within an <aop: confi g>
element (you can have more than one <aop: confi g> element in an application context configuration). An
<aop: confi g> element can contain pointcut, advisor, and aspect elements (note these must be declared in that
order).

=] Warning

The <aop: confi g> style of configuration makes heavy use of Spring's auto-proxying mechanism.
This can cause issues (such as advice not being woven) if you are already using explicit
auto-proxying via the use of BeanNaneAut oPr oxyCreat or Or suchlike. The recommended usage
pattern is to use either just the <aop: conf i g> style, or just the Aut oPr oxyCr eat or Style.

Spring Framework (2.0.6) 120

Aspect Oriented Programming with Spring

6.3.1. Declaring an aspect

Using the schema support, an aspect is simply aregular Java object defined as a bean in your Spring application
context. The state and behavior is captured in the fields and methods of the object, and the pointcut and advice
information is captured in the XML.

An aspect is declared using the <aop:aspect> element, and the backing bean is referenced using the ref
attribute:

<aop: confi g>
<aop: aspect id="nyAspect" ref="aBean">

</ aop: aspect >
</ aop: confi g>

<bean i d="aBean" class="...">

</ bean>

The bean backing the aspect ("aBean" in this case) can of course be configured and dependency injected just
like any other Spring bean.

6.3.2. Declaring a pointcut

A named pointcut can be declared inside an <aop:config> element, enabling the pointcut definition to be shared
across several aspects and advisors.

A pointcut representing the execution of any business service in the service layer could be defined as follows:

<aop: confi g>

<aop: poi ntcut i d="busi nessService"
expressi on="executi on(* com xyz. nyapp.service.*.*(..))"/>

</ aop: confi g>

Note that the pointcut expression itself is using the same AspectJ pointcut expression language as described in
Section 6.2, “ @AspectJ support”. If you are using the schema based declaration style with Java 5, you can refer
to named pointcuts defined in types (@A spects) within the pointcut expression, but this feature is not available
on JDK 1.4 and below (it relies on the Java 5 specific AspectJ reflection APIs). On JDK 1.5 therefore, another
way of defining the above pointcut would be:

<aop: confi g>

<aop: poi ntcut id="busi nessService"
expressi on="com xyz. myapp. Syst emAr chi t ect ur e. busi nessServi ce()"/>

</ aop: confi g>

Assuming you have a Syst emAr chi t ect ur e aspect as described in Section 6.2.3.3, “ Sharing common pointcut
definitions’.

Declaring a pointcut inside an aspect is very similar to declaring atop-level pointcut:
<aop: confi g>

<aop: aspect id="nyAspect" ref="aBean">

<aop: poi ntcut i d="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

Spring Framework (2.0.6) 121

Aspect Oriented Programming with Spring

</ aop: aspect >

</ aop: confi g>

When combining pointcut sub-expressions, '& &' is awkward within an XML document, and so the keywords
‘and', 'or' and 'not' can be used in place of '&&", '||' and '!" respectively.

Note that pointcuts defined in this way are referred to by their XML id, and cannot define pointcut parameters.
The named pointcut support in the schema based definition style is thus more limited than that offered by the
@Aspect] style.

6.3.3. Declaring advice

The same five advice kinds are supported as for the @A spectJ style, and they have exactly the same semantics.

6.3.3.1. Before advice

Before advice runs before a matched method execution. It is declared inside an <aop: aspect > using the
<aop:before> element.
<aop: aspect i d="beforeExanpl e" ref="aBean">
<aop: before

poi nt cut - r ef =" dat aAccessOper ati on"
nmet hod="doAccessCheck"/ >

</ aop: aspect >

Here dat aAccessOperati on is the id of a pointcut defined at the top (<aop: confi g>) level. To define the
pointcut inline instead, replace the poi nt cut - r ef attribute with apoi nt cut attribute:

<aop: aspect id="bef oreExanpl e" ref="aBean">
<aop: before

poi nt cut ="execution(* com xyz. nyapp.dao.*.*(..))"
net hod="doAccessCheck"/ >

</ aop: aspect >

As we noted in the discussion of the @AspectJ style, using named pointcuts can significantly improve the
readability of your code.

The method attribute identifies a method (doAccessCheck) that provides the body of the advice. This method
must be defined for the bean referenced by the aspect element containing the advice. Before a data access
operation is executed (a method execution join point matched by the pointcut expression), the
"doAccessCheck™" method on the aspect bean will be invoked.

6.3.3.2. After returning advice

After returning advice runs when a matched method execution completes normally. It is declared inside an
<aop: aspect > in the same way as before advice. For example:

Spring Framework (2.0.6) 122

Aspect Oriented Programming with Spring

<aop: aspect id="afterReturni ngExanpl e" ref="aBean">
<aop: after-returning

poi nt cut - ref =" dat aAccessOper ati on”
met hod="doAccessCheck"/ >

</ aop: aspect >

Just as in the @Aspectd style, it is possible to get hold of the return value within the advice body. Use the
returning attribute to specify the name of the parameter to which the return value should be passed:
<aop: aspect id="afterReturni ngExanpl e" ref="aBean">
<aop: after-returning
poi nt cut - r ef =" dat aAccessOper ati on”

returning="retVal"
met hod="doAccessCheck"/ >

</ aop: aspect >

The doAccessCheck method must declare a parameter named r et val . The type of this parameter constrains
matching in the same way as described for @AfterReturning. For example, the method signature may be
declared as:

public void doAccessCheck(Ohject retVal) {...

6.3.3.3. After throwing advice

After throwing advice executes when a matched method execution exits by throwing an exception. It is
declared inside an <aop: aspect > using the after-throwing element:

<aop: aspect id="after Throwi ngExanpl e" ref="aBean">
<aop: after-throw ng

poi nt cut - ref =" dat aAccessOper ati on”
nmet hod="doRecover yActi ons"/ >

</ aop: aspect >

Just as in the @Aspect] style, it is possible to get hold of the thrown exception within the advice body. Use the
throwing attribute to specify the name of the parameter to which the exception should be passed:

<aop: aspect id="after Throw ngExanpl e" ref="aBean">

<aop: after-throw ng
poi nt cut - ref =" dat aAccessOper ati on”
t hr owi ng="dat aAccessEx"
net hod="doRecoveryActions"/>

</ aop: aspect >

The doRecoveryActions method must declare a parameter named dat aAccessEx. The type of this parameter
constrains matching in the same way as described for @AfterThrowing. For example, the method signature
may be declared as:

Spring Framework (2.0.6) 123

Aspect Oriented Programming with Spring

public void doRecoveryActi ons(Dat aAccessExcepti on dat aAccessEx) {...

6.3.3.4. After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the af t er element:

<aop: aspect id="afterFinallyExanple" ref="aBean">

<aop: after
poi nt cut - r ef =" dat aAccessOper ati on"
net hod="doRel easelLock"/ >

</ aop: aspect >

6.3.3.5. Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution. It has the
opportunity to do work both before and after the method executes, and to determine when, how, and even if, the
method actually gets to execute at all. Around advice is often used if you need to share state before and after a
method execution in a thread-safe manner (starting and stopping a timer for example). Always use the least
powerful form of advice that meets your requirements; don't use around advice if simple before advice would
do.

Around advice is declared using the aop: ar ound element. The first parameter of the advice method must be of
type Pr oceedi ngJoi nPoi nt . Within the body of the advice, calling proceed() on the Proceedi ngJoi nPoi nt

causes the underlying method to execute. The pr oceed method may also be calling passing in an Oj ect[] - the
valuesin the array will be used as the arguments to the method execution when it proceeds. See Section 6.2.4.5,
“Around advice” for notes on calling proceed with an tbj ect [] .

<aop: aspect id="aroundExanpl e" ref="aBean">

<aop: ar ound
poi nt cut - r ef =" busi nessServi ce"
net hod="doBasi cProfiling"/>

</ aop: aspect >

The implementation of the doBasi cProfi | i ng advice would be exactly the same as in the @A spect] example
(minus the annotation of course):

public Object doBasicProfiling(Proceedi ngdoinPoint pjp) throws Throwabl e {
[/ start stopwatch
Obj ect retVal = pjp.proceed();
/] stop stopwatch
return ret Val

6.3.3.6. Advice parameters

The schema based declaration style supports fully typed advice in the same way as described for the @A spect]
support - by matching pointcut parameters by name against advice method parameters. See Section 6.2.4.6,
“Advice parameters’ for details.

If you wish to explicity specify argument names for the advice methods (not relying on either of the detection

Spring Framework (2.0.6) 124

Aspect Oriented Programming with Spring

strategies previously described) then this is done using the ar g- nanes attribute of the advice element. For
example:

<aop: before
poi nt cut ="com xyz. | i b. Poi nt cuts. anyPubl i cMet hod() and @nnot ati on(auditable)"
nmet hod="audi t "
ar g- names="audi t abl e"/ >

The ar g- nanes attribute accepts a comma-delimited list of parameter names.

Find below a dlightly more involved example of the XSD-based approach that illustrates some around advice
used in conjunction with a number of strongly typed parameters.

package x.y.service;

public interface FooService {

Foo get Foo(String fooNarme, int age);

}

public class Default FooService inplements FooService {

public Foo get Foo(String name, int age) {
return new Foo(nane, age);
}

Next up is the aspect. Notice the fact that the profile(..) method accepts a number of strongly-typed
parameters, the first of which happens to be the join point used to proceed with the method call: the presence of
this parameter is an indication that the profil e(..) isto be used asar ound advice:

package Xx.y;

i nport org. aspectj .| ang. Proceedi ngJoi nPoi nt;
i mport org.springframework. util.StopWatch;

public class SinpleProfiler {

public oject profil e(ProceedingJoi nPoint call, String name, int age) throws Throwabl e {
St opWat ch cl ock = new St opWat ch(
"Profiling for '" + name + "' and '" + age + "'");
try {

clock.start(call.toShortString());
return call.proceed();
} finally {
cl ock. stop();
System out. println(clock.prettyPrint());

Finally, here is the XML configuration that is required to effect the execution of the above advice for a
particular joinpoint:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"

xsi : schemalLocat i on="
http://ww. springframework. or g/ schenma/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. or g/ schema/ aop http://ww. springframewor k. or g/ schena/ aop/ spri ng- aop- 2. 0. xsd" >

<l-- this is the object that will be proxied by Spring's AOP infrastructure -->
<bean i d="fooService" class="x.y.service. Def aul t FooServi ce"/ >

<l-- this is the actual advice itself -->
<bean id="profiler" class="x.y.SinpleProfiler"/>

<aop: confi g>

Spring Framework (2.0.6) 125

Aspect Oriented Programming with Spring

<aop: aspect ref="profiler">

<aop: poi ntcut id="theExecuti onOf SoneFooSer vi ceMet hod"
expressi on="execution(* x.y.service. FooService. get Foo(String,int))
and args(nane, age)"/>

<aop: around poi ntcut-ref="t heExecuti onOf SomeFooSer vi ceMet hod"
nmet hod="profile"/>

</ aop: aspect >
</ aop: confi g>

</ beans>

If we had the following driver script, we would get output something like this on standard output:

i mport org. springframework. beans. fact ory. BeanFact ory;
i mport org.springframework. cont ext. support. d assPat hXm Appl i cati onCont ext ;
i nport X.y.service. FooServi ce;

public final class Boot {

public static void main(final String[] args) throws Exception {
BeanFactory ctx = new C assPat hXm Applicati onContext ("x/y/plain.xm");
FooService foo = (FooService) ctx.getBean("fooService");
f 0o. get Foo(" Pengo", 12);

Stopwatch ' Profiling for 'Pengo’ and '12'': running tine (mllis) =0

00000 ? execution(getFoo)

6.3.3.7. Advice ordering

When multiple advice needs to execute at the same join point (executing method) the ordering rules are as
described in Section 6.2.4.7, “Advice ordering”. The precedence between aspects is determined by either
adding the o der annotation to the bean backing the aspect or by having the bean implement the o der ed
interface.

6.3.4. Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised objects
implement a given interface, and to provide an implementation of that interface on behalf of those objects.

Anintroduction is made using the aop: decl ar e- par ent s element inside an aop: aspect Thiselement isused to
declare that matching types have a new parent (hence the name). For example, given an interface
UsageTr acked, and an implementation of that interface Def aul t UsageTr acked, the following aspect declares
that all implementors of service interfaces also implement the UsageTr acked interface. (In order to expose
statistics viaJM X for example.)

<aop: aspect id="usageTrackerAspect" ref="usageTracki ng">

<aop: decl are- parents
t ypes- mat chi ng="com xzy. nyapp. servi ce. *+",
i npl enent -i nt er f ace="UsageTr acked"
defaul t-i npl =" com xyz. nyapp. servi ce. tracki ng. Def aul t UsageTr acked"/ >

<aop: before
poi nt cut =" com xyz. myapp. Syst emAr chi t ect ur e. busi nessServi ce()
and thi s(usageTracked)"
nmet hod="r ecor dUsage"/ >

Spring Framework (2.0.6) 126

Aspect Oriented Programming with Spring

</ aop: aspect >

The class backing the usageTr acki ng bean would contain the method:

public void recordUsage(UsageTracked usageTracked) {
usageTr acked. i ncr ement UseCount () ;
}

The interface to be implemented is determined by inplenent-interface attribute. The value of the
types- mat chi ng attribute is an AspectJ type pattern :- any bean of a matching type will implement the
UsageTr acked interface. Note that in the before advice of the above example, service beans can be directly used
as implementations of the UsageTr acked interface. If accessing a bean programmatically you would write the
following:

UsageTr acked usageTracked = (UsageTracked) context.get Bean("nyService");

6.3.5. Aspect instantiation models

The only supported instantiation model for schema-defined aspects is the singleton model. Other instantiation
models may be supported in future rel eases.

6.3.6. Advisors

The concept of "advisors' is brought forward from the AOP support defined in Spring 1.2 and does not have a
direct equivalent in AspectJ. An advisor is like a small self-contained aspect that has a single piece of advice.
The advice itself is represented by a bean, and must implement one of the advice interfaces described in
Section 7.3.2, “Advice typesin Spring”. Advisors can take advantage of AspectJ pointcut expressions though.

Spring 2.0 supports the advisor concept with the <aop: advi sor > element. Y ou will most commonly see it used
in conjunction with transactional advice, which aso has its own namespace support in Spring 2.0. Here's how it
looks:

<aop: confi g>

<aop: poi ntcut i d="busi nessService"
expressi on="execution(* com xyz. nmyapp.service.*.*(..))"/>

<aop: advi sor
poi nt cut - ref =" busi nessServi ce"
advi ce-ref ="t x- advi ce"/ >

</ aop: confi g>

<t x: advi ce id="t x-advice">
<tx:attributes>
<t x: met hod name="*" propagati on="REQU RED"/ >
</tx:attributes>
</t x: advi ce>

As well as the poi nt cut -ref attribute used in the above example, you can aso use the poi nt cut attribute to
define a pointcut expression inline.

To define the precedence of an advisor so that the advice can participate in ordering, use the or der attribute to
define the O der ed value of the advisor.

Spring Framework (2.0.6) 127

Aspect Oriented Programming with Spring

6.3.7. Example

Let's see how the concurrent locking failure retry example from Section 6.2.7, “Example” looks when rewritten
using the schema support.

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock loser).
If the operation is retried, it is quite likely it will succeed next time round. For business services where it is
appropriate to retry in such conditions (idempotent operations that don't need to go back to the user for conflict
resolution), wed like to transparently retry the operation to avoid the client seeing a
Pessi mi sti cLocki ngFai | ur eExcepti on. Thisis arequirement that clearly cuts across multiple services in the
service layer, and henceisideal for implementing via an aspect.

Because we want to retry the operation, we'll need to use around advice so that we can call proceed multiple
times. Here's how the basic aspect implementation looks (it's just a regular Java class using the schema
support):

public class Concurrent Operati onExecutor inplenments Ordered {
private static final int DEFAULT _MAX RETRIES = 2;

private int maxRetries = DEFAULT_MAX RETRI ES;
private int order = 1;

public void set MaxRetries(int nmaxRetries) {
this. maxRetries = maxRetri es;

}

public int getOder() {
return this.order;
}

public void setOrder(int order) {
this.order = order;

}

public Object doConcurrent Operation(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
int numAttenpts = O;
Pessi m sti cLocki ngFai | ureExcepti on | ockFai | ur eExcepti on;
do {
numAt t enpt s++;

try {
return pjp.proceed();

cat ch(Pessi m sti cLocki ngFai | ureException ex) {
| ockFai | ureException = ex;
}
}
whi |l e(numAttenpts <= this. maxRetries);
throw | ockFai | ur eExcepti on;

Note that the aspect implements the o der ed interface so we can set the precedence of the aspect higher than
the transaction advice (we want a fresh transaction each time we retry). The maxRet ri es and or der properties
will both be configured by Spring. The main action happens in the doConcurrent Oper ati on around advice
method. We try to proceed, and if we fail with a Pessi ni sti cLocki ngFai | ur eExcepti on we simply try again
unless we have exhausted all of our retry attempts.

This classisidentical to the one used in the @Aspect] example, but with the annotations removed.

The corresponding Spring configuration is:

<aop: confi g>

<aop: aspect id="concurrent Qperati onRetry" ref="concurrent Operati onExecutor">

Spring Framework (2.0.6) 128

Aspect Oriented Programming with Spring

<aop: poi ntcut id="idenpotent Operation"
expressi on="execution(* com xyz. nmyapp.service.*.*(..))"/>

<aop: ar ound
poi nt cut - ref ="i denpot ent Oper ati on"
nmet hod="doConcurrent Operati on"/>

</ aop: aspect >
</ aop: confi g>

<bean i d="concurrent Operati onExecutor"
cl ass="com xyz. nyapp. servi ce. i npl . Concurr ent Oper at i onExecut or" >
<property name="maxRetries" val ue="3"/>
<property name="order" val ue="100"/>
</ bean>

Notice that for the time being we assume that all business services are idempotent. If thisis not the case we can
refine the aspect so that it only retries genuinely idempotent operations, by introducing an 1 denpot ent
annotation:

@Ret ent i on(Ret ent i onPol i cy. RUNTI MVE)
public @nterface |denpotent {
/] marker annotation

}

and using the annotation to annotate the implementation of service operations. The change to the aspect to only
retry idempotent operations simply involves refining the pointcut expression so that only @ denpot ent
operations match:

<aop: poi ntcut id="idenpotent Operation"
expressi on="execution(* com xyz. nyapp. service.*.*(..)) and
@nnot at i on(com xyz. nyapp. servi ce. | denpotent)"/>

6.4. Choosing which AOP declaration style to use

Once you have decided that an aspect is the best approach for implementing a given requirement, how do you
decide between using Spring AOP or Aspect], and between the Aspect language (code) style, @Aspect]
annotation style, and the XML style? These decisions are influenced by a number of factors including
application requirements, development tools, and team familiarity with AOP.

6.4.1. Spring AOP or full AspectJ?

Use the simplest thing that can work. Spring AOP is simpler than using full AspectJ as there is no requirement
to introduce the AspectJ compiler / weaver into your development and build processes. If you only need to
advise the execution of operations on Spring beans, then Spring AOP is the right choice. If you need to advise
domain objects, or any other object not managed by the Spring container, then you will need to use AspectJ.
You will also need to use AspectJ if you wish to advise join points other than simple method executions (for
example, call join points, field get or set join points, and so on).

When using AspectJ, you have the choice of the Aspect] language syntax (also known as the "code style") or
the @AspectJ annotation style. If aspects play a large role in your design, and you are able to use the AspectJ
Development Tools (AJDT) in Eclipse, then the AspectJ language syntax is the preferred option: it is cleaner
and simpler because the language was purposefully designed for writing aspects. If you are not using Eclipse,
or have only a few aspects that do not play a magjor role in your application, then you may want to consider
using the @AspectJ style and sticking with a regular Java compilation in your IDE, and adding an aspect

Spring Framework (2.0.6) 129

http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/

Aspect Oriented Programming with Spring

weaving (linking) phase to your build scripts.

6.4.2. @Aspectd or XML for Spring AOP?

The XML style will be most familiar to existing Spring users. It can be used with any JDK level (referring to
named pointcuts from within pointcut expressions does still require Java 5 though) and is backed by genuine
POJOs. When using AOP as a tool to configure enterprise services (a good test is whether you consider the
pointcut expression to be a part of your configuration you might want to change independently) then XML can
be a good choice. With the XML styleit is arguably clearer from your configuration what aspects are present in
the system.

The XML style has two disadvantages. Firstly it does not fully encapsulate the implementation of the
requirement it addresses in a single place. The DRY principle says that there should be a single, unambiguous,
authoritative representation of any piece of knowledge within a system. When using the XML style, the
knowledge of how a requirement is implemented is split across the declaration of the backing bean class, and
the XML in the configuration file. When using the @AspectJ style there is a single module - the aspect - in
which this information is encapsulated. Secondly, the XML style is more limited in what in can express than
the @AspectJ style: only the "singleton" aspect instantiation model is supported, and it is not possible to
combine named pointcuts declared in XML. For example, in the @A spectJ style we can write something like:

@oi nt cut (execution(* get*()))
public void propertyAccess() {}

@Poi nt cut (execution(org.xyz. Account+ *(..))
public void operationReturni ngAnAccount () {}

@Poi nt cut (propertyAccess() && operati onRet urni ngAnAccount ())
public void account PropertyAccess() {}

In the XML style | certainly can declare the first two pointcuts:

<aop: poi ntcut id="propertyAccess"
expressi on="execution(* get*())"/>

<aop: poi ntcut id="operationReturni ngAnAccount"
expressi on="execution(org. xyz. Account+ *(..))"/>

The downside of the XML approach becomes evident in this case because | cannot define the
'account Propert yAccess' pointcut by combining these definitions.

The @Aspect] style supports additiona instantiation models, and richer pointcut composition. It has the
advantage of keeping the aspect as a modular unit. It also has the advantage the @AspectJ aspects can be
understood both by Spring AOP and by Aspect] - so if you later decide you need the capabilities of Aspect]to
implement additional requirementsthen it is very easy to migrate to an AspectJ based approach.

So much for the pros and cons of each style then: which is best? If you are not using Javab (or above) then
clearly the XML-style is the best because it is the only option available to you. If you are using Javab+, then
you really will have to come to your own decision as to which style suits you best. In the experience of the
Spring team, we advocate the use of the @AspectJ style whenever there are aspects that do more than simple
"configuration” of enterprise services. If you are writing, have written, or have access to an aspect that is not
part of the business contract of a particular class (such as atracing aspect), then the XML-styleis better.

6.5. Mixing aspect types

It is perfectly possible to mix @Aspect] style aspects using the autoproxying support, schema-defined

Spring Framework (2.0.6) 130

Aspect Oriented Programming with Spring

<aop: aspect > aspects, <aop: advi sor > declared advisors and even proxies and interceptors defined using the
Spring 1.2 style in the same configuration. All of these are implemented using the same underlying support
mechanism and will co-exist without any difficulty.

6.6. Proxying mechanisms

Spring AOP uses either JDK dynamic proxies or CGLIB to create the proxy for a given target object. (JDK
dynamic proxies are preferred whenever you have a choice).

If the target object to be proxied implements at least one interface then a JDK dynamic proxy will be used. All
of the interfaces implemented by the target type will be proxied. If the target object does not implement any
interfaces then a CGLIB proxy will be created.

If you want to force the use of CGLIB proxying (for example, to proxy every method defined for the target
object, not just those implemented by its interfaces) you can do so. However, there are some issues to consider:

» final methods cannot be advised, asthey cannot be overriden.

* You will need the CGLIB 2 binaries on your classpath, whereas dynamic proxies are available with the JDK.
Spring will automatically warn you when it needs CGLIB but it isn't available on the classpath.

« The constructor of your proxied object will be called twice. This is a natural consegquence of the CGLIB
proxy model whereby a subclass is generated for each proxied object. For each proxied instance, two objects
are created: the actual proxied object and an instance of the subclass that implements the advice. This
behavior does not show when using JDK proxies. Usualy, calling the constructor of the proxied type twice,
is not a huge problem, as there are usually only assignments taking place and no real logic is (and probably
should be) implemented in the constructor.

To force the use of CGLIB proxies set the value of the proxy-target - cl ass attribute of the <aop: confi g>
element to true:

<aop: config proxy-target-class="true">
<!-- other beans defined here... -->

</ aop: confi g>
To force CGLIB proxying when using the @Aspect] autoproxy support, set the ' proxy-target - cl ass'

attribute of the <aop: aspectj - aut opr oxy> element totr ue:

<aop: aspectj - aut opr oxy proxy-target-class="true"/>

6.6.1. Understanding AOP proxies

Spring AOP is proxy-based. It is vitally important that you grasp the semantics of what that last statement
actually means before you write your own aspects or use any of the Spring AOP-based aspects supplied with
the Spring Framework.

Consider first the scenario where you have a plain-vanilla, un-proxied, nothing-special-about-it, straight object
reference, asillustrated by the following code snippet.

public class SinplePojo inplenents Pojo {

public void foo() {

Spring Framework (2.0.6) 131

Aspect Oriented Programming with Spring

/'l this is a direct nmethod call on the 'this' reference
this.bar();
}

public void bar() {
/1 sone logic...
}

If you invoke a method on an object reference, the method is invoked directly on that object reference, as can
be seen below.

pojo.foo()

Plain Object b foo() on the cbject

public class Main {

public static void main(String[] args) {
Poj o pojo = new Si npl ePoj o();

/1 this is a direct nethod call on the 'pojo' reference
poj o. foo();

Things change slightly when the reference that client code has is a proxy. Consider the following diagram and
code snippet.

foo() on the proxy

Flain Object then foo() on the object

public class Main {

public static void main(String[] args) {

Spring Framework (2.0.6) 132

Aspect Oriented Programming with Spring

ProxyFactory factory = new ProxyFactory(new Si npl ePojo());
factory. addl nterface(Poj o. cl ass);
factory. addAdvi ce(new RetryAdvice());

Poj o pojo = (Pojo) factory.getProxy();

// this is a nethod call on the proxy!
poj o. foo();

The key thing to understand here is that the client code inside the mai n(. .) of the mai n class has a reference to
the proxy. This means that method calls on that object reference will be calls on the proxy, and as such the
proxy will be able to delegate to all of the interceptors (advice) that are relevant to that particular method call.
However, once the call has finally reached the target object, the si npl ePoj o reference in this case, any method
cals that it may make on itself, such asthis. bar() or this.foo(), are going to be invoked against the t hi s
reference, and not the proxy. This has important implications. It means that self-invocation is not going to result
in the advice associated with a method invocation getting a chance to execute.

Okay, so what is to be done about this? The best approach (the term best is used loosely here) is to refactor
your code such that the self-invocation does not happen. For sure, this does entail some work on your part, but
it is the best, least-invasive approach. The next approach is absolutely horrendous, and | am almost reticent to
point it out precisely because it is so horrendous. You can (choke!) totally tie the logic within your class to
Spring AOP by doing this:
public class SinplePojo inplenents Pojo {
public void foo() {

// this works, but... gah!
((Poj o) AopContext.currentProxy()).bar();

public void bar() {
/1 sone logic...
}

Thistotally couples your code to Spring AOP, and it makes the classitself aware of the fact that it is being used
in an AOP context, which flies in the face of AOP. It aso requires some additional configuration when the
proxy is being created:
public class Main {
public static void main(String[] args) {
ProxyFactory factory = new ProxyFact ory(new Si npl ePojo());
factory. adddl nterface(Poj o. cl ass);
factory. addAdvi ce(new RetryAdvice());
factory. set ExposeProxy(true);

Poj o pojo = (Pojo) factory.getProxy();

/1 this is a nethod call on the proxy!
poj o. foo();

Finally, it must be noted that Aspect] does not have this self-invocation issue because it is not a proxy-based
AOP framework.

6.7. Programmatic creation of @AspectJ Proxies

Spring Framework (2.0.6) 133

Aspect Oriented Programming with Spring

In addition to declaring aspects in your configuration using either <aop: conf i g> Or <aop: aspect j - aut opr oxy>,
it is aso possible programmatically to create proxies that advise target objects. For the full details of Spring's
AOP AP, see the next chapter. Here we want to focus on the ability to automatically create proxies using

@A spect] aspects.

The class org. spri ngf ramewor k. aop. aspect j . annot at i on. Aspect JProxyFactory can be used to create a
proxy for a target object that is advised by one or more @A spect] aspects. Basic usage for this class is very
simple, asillustrated below. See the Javadocs for full information.

/'l create a factory that can generate a proxy for the given target object
Aspect JProxyFactory factory = new Aspect JProxyFact ory(target Qbject);

// add an aspect, the class nust be an @\spectJ aspect
/'l you can call this as many tines as you need with different aspects
factory. addAspect (Securit yManager. cl ass) ;

// you can al so add existing aspect instances, the type of the object supplied nust be an @\spectJ aspect
factory. addAspect (usageTr acker);

/1 now get the proxy object...
M/l nt er faceType proxy = factory. get Proxy();

6.8. Using AspectJ with Spring applications

Everything we've covered so far in this chapter is pure Spring AOP. In this section, we're going to look at how
you can use the AspectJ compiler/weaver instead of or in addition to Spring AOP if your needs go beyond the
facilities offered by Spring AOP alone.

Spring ships with a small Aspect] aspect library (it's available standalone in your distribution as
spring-aspects.jar, you'll need to add this to your classpath to use the aspects in it). Section 6.8.1, “Using
Aspect] to dependency inject domain objects with Spring” and Section 6.8.2, “Other Spring aspects for
Aspect’ discuss the content of this library and how you can use it. Section 6.8.3, “ Configuring AspectJ aspects
using Spring 10C” discusses how to dependency inject Aspect] aspects that are woven using the Aspect]
compiler. Finally, Section 6.8.4, “Using AspectJ Load-time weaving (LTW) with Spring applications’ provides
an introduction to load-time weaving for Spring applications using AspectJ.

6.8.1. Using AspectJ to dependency inject domain objects with Spring

The Spring container instantiates and configures beans defined in your application context. It is also possible to
ask a bean factory to configure a pre-existing object given the name of a bean definition containing the
configuration to be applied. The spri ng- aspects. jar contains an annotation-driven aspect that exploits this
capability to allow dependency-injection of any object. The support is intended to be used for objects created
outside of the control of any container. Domain objects often fall into this category: they may be created
programmatically using the new operator, or by an ORM tool as aresult of a database query.

The @onf i gur abl e annotation marks a class as eligible for Spring-driven configuration. In the simplest case it
can be used just as a marker annotation:

package com xyz. nyapp. domai n;

i mport org.springframework. beans. factory. annot ati on. Confi gur abl e;

@Conf i gurabl e
public class Account {

}

Spring Framework (2.0.6) 134

Aspect Oriented Programming with Spring

When used as a marker interface in this way, Spring will configure new instances of the annotated type
(Account in this case) using a prototypica bean definition with the same name as the fully-qualified type name
(com xyz. nyapp. domai n. Account). Since the default name for a bean is the fully-qualified name of its type, a
convenient way to declare the prototype definition is simply to omit theid attribute:

<bean cl ass="com xyz. nyapp. donmai n. Account” scope="pr ot ot ype">
<property name="fundsTransferServi ce" ref="fundsTransfer Service"/>

</ bean>

If you want to explicitly specify the name of the prototype bean definition to use, you can do so directly in the
annotation:

package com xyz. nyapp. domai n
i mport org.springframework. beans. factory. annot ati on. Confi gur abl e;

@Conf i gur abl e("account")
public class Account {

}

Spring will now look for a bean definition named "account” and use that as a prototypical definition to
configure new Account instances.

You can also use autowiring to avoid having to specify a prototypical bean definition at all. To have Spring
apply autowiring use the autowire property of the @onfigurable annotation: specify either
@onf i gur abl e(aut owi r e=Aut owi r e. BY_TYPE) or @onf i gur abl e(aut owi r e=Aut owi r e. BY_NAVE for
autowiring by type or by name respectively.

Finally you can enable Spring dependency checking for the object references in the newly created and
configured object by using the dependencyCheck attribute (for example:
@onf i gur abl e(aut owi r e=Aut owi r e. BY_NAME, dependencyCheck=true)). If this attribute is set to true, then
Spring will validate after configuration that all properties (that are not primitives or collections) have been set.

Using the annotation on its own does nothing of course. It's the Annot ati onBeanConfi gur er Aspect in
spring-aspects. jar that acts on the presence of the annotation. In essence the aspect says "after returning
from the initialization of a new object of a type with the @onfi gurabl e annotation, configure the newly
created object using Spring in accordance with the properties of the annotation”. For this to work the annotated
types must be woven with the Aspect] weaver - you can either use a build-time ant or maven task to do this (see
for example the AspectJ Development Environment Guide) or load-time weaving (see Section 6.8.4, “Using
AspectJ Load-time weaving (LTW) with Spring applications’).

The Annot at i onBeanConf i gur er Aspect itself needs configuring by Spring (in order to obtain areference to the
bean factory that is to be used to configure new objects). The Spring AOP namespace defines a convenient tag
for doing this. Simply include the following in your application context configuration:

<aop: spring- confi gured/ >

If you are using the DTD instead of schema, the equivalent definition is:

<bean
cl ass="org. spri ngframewor k. beans. f act ory. aspectj . Annot at i onBeanConf i gur er Aspect "
factory-net hod="aspectOf"/ >

Instances of @Configurable objects created before the aspect has been configured will result in awarning being

Spring Framework (2.0.6) 135

http://www.eclipse.org/aspectj/doc/released/devguide/antTasks.html

Aspect Oriented Programming with Spring

issued to the log and no configuration of the object taking place. An example might be a bean in the Spring
configuration that creates domain objects when it is initialized by Spring. In this case you can use the
"depends-on" bean attribute to manually specify that the bean depends on the configuration aspect.

<bean i d="nyService"
cl ass="com xzy. nyapp. servi ce. MyServi ce"
depends- on="or g. spri ngf ramewor k. beans. f act ory. aspectj . Annot at i onBeanConfi gur er Aspect " >

</ bean>

6.8.1.1. Unit testing @onfi gur abl e objects

One of the goals of the @onfi gur abl e support is to enable independent unit testing of domain objects without
the difficulties associated with hard-coded lookups. If @onfi gur abl e types have not been woven by AspectJ
then the annotation has no affect during unit testing, and you can simply set mock or stub property referencesin
the object under test and proceed as normal. If @onfi gur abl e types have been woven by AspectJ then you can
gtill unit test outside of the container as normal, but you will see a warning message each time that you
construct an @onf i gur abl e object indicating that it has not been configured by Spring.

6.8.1.2. Working with multiple application contexts

The Annot at i onBeanConf i gur er Aspect Used to implement the @onf i gur abl e support is an AspectJ singleton
aspect. The scope of a singleton aspect is the same as the scope of st ati ¢ members, that is to say there is one
aspect instance per classloader that defines the type. This meansthat if you define multiple application contexts
within the same classloader hierarchy you need to consider where to define the <aop: spri ng- confi gured/ >
bean and where to place spri ng- aspect s. j ar on the classpath.

Consider a typical Spring web-app configuration with a shared parent application context defining common
business services and everything needed to support them, and one child application context per serviet
containing definitions particular to that servlet. All of these contexts will co-exist within the same classloader
hierarchy, and so the Annot at i onBeanConf i gur er Aspect can only hold a reference to one of them. In this case
we recommend defining the <aop: spri ng- confi gur ed/ > bean in the shared (parent) application context: this
defines the services that you are likely to want to inject into domain objects. A consequence is that you cannot
configure domain objects with references to beans defined in the child (serviet-specific) contexts using the
@Configurable mechanism (probably not something you want to do anyway!).

When deploying multiple web-apps within the same container, ensure that each web-application loads the types
in spring-aspects.jar using its own classloader (for example, by placing spring-aspects.jar in
"WEB-INF/lib'). If spring-aspects.jar isonly added to the container wide classpath (and hence loaded by
the shared parent classloader), all web applications will share the same aspect instance which is probably not
what you want.

6.8.2. Other Spring aspects for AspectJ

In addition to the @onf i gur abl e SUpPOrt, spri ng- aspect s. j ar contains an AspectJ aspect that can be used to
drive Spring's transaction management for types and methods annotated with the @r ansacti onal annotation.
This is primarily intended for users who want to use Spring's transaction support outside of the Spring
container.

The aspect that interprets @r ansact i onal annotations is the Annot ati onTr ansact i onAspect . When using this
aspect, you must annotate the implementation class (and/or methods within that class), not the interface (if any)
that the class implements. AspectJ follows Java's rule that annotations on interfaces are not inherited.

A @ransactional annotation on a class specifies the default transaction semantics for the execution of any

Spring Framework (2.0.6) 136

Aspect Oriented Programming with Spring

public operation in the class.

A @ransactional annotation on a method within the class overrides the default transaction semantics given
by the class annotation (if present). Methods with public, protected, and default visibility may al be annotated.
Annotating protected and default visibility methods directly is the only way to get transaction demarcation for
the execution of such operations.

For Aspect] programmers that want to use the Spring configuration and transaction management support but
don't want to (or can't) use annotations, spri ng- aspects. j ar also contains abstract aspects you can extend to
provide your own pointcut definitions. See the Javadocs for Abstract BeanConfi gurerAspect and
Abstract Transact i onAspect for more information. As an example, the following excerpt shows how you
could write an aspect to configure all instances of objects defined in the domain model using prototypical bean
definitions that match the fully-qualified class names:

public aspect Domai nObj ect Configurati on extends Abstract BeanConfi gurerAspect {

publ i ¢ Domai nObj ect Confi guration() {
set BeanW ri ngl nf oResol ver (new C assNameBeanW ri ngl nf oResol ver());

}

/'l the creation of a new bean (any object in the domai n nodel)
protected pointcut beanCreati on(Obj ect beanlnstance) :
initialization(new..)) &&
Syst emAr chi t ecture. i nDomai nModel () &&
t hi s(beanl nst ance) ;

6.8.3. Configuring AspectJ aspects using Spring loC

When using AspectJ aspects with Spring applications, it's natural to want to configure such aspects using
Spring. The AspectJ runtime itself is responsible for aspect creation, and the means of configuring the AspectJ
created aspects via Spring depends on the AspectJ instantiation model (per-clause) used by the aspect.

The majority of AspectJ aspects are singleton aspects. Configuration of these aspectsis very easy, smply create
a bean definition referencing the aspect type as normal, and include the bean attribute
"factory-net hod="aspect O "' . This ensures that Spring obtains the aspect instance by asking AspectJ for it
rather than trying to create an instance itself. For example:

<bean id="profiler" class="comxyz.profiler.Profiler"
factory-net hod="aspect O " >
<property name="profilingStrategy" ref="janonProfilingStrategy"/>
</ bean>

For non-singleton aspects, the easiest way to configure them is to create prototypical bean definitions and
annotate use the @Configurable support from spri ng- aspect s. j ar to configure the aspect instances once they
have bean created by the AspectJ runtime.

If you have some @Aspect] aspects that you want to weave with Aspectd (for example, using load-time
weaving for domain model types) and other @A spectJ aspects that you want to use with Spring AOP, and these
aspects are all configured using Spring, then you'll need to tell the Spring AOP @A spectJ autoproxying support
which subset of the @AspectJ aspects defined in the configuration should be used for autoproxying. You can
do this by using one or more <i ncl ude/ > elements inside the <aop: aspectj - aut opr oxy/ > declaration. Each
include element specifies a name pattern, and only beans with names matched by at least one of the patterns
will be used for Spring AOP autoproxy configuration:

<aop: aspect | - aut opr oxy>
<i ncl ude nane="t hi sBean"/ >
<i ncl ude nanme="t hat Bean"/ >

Spring Framework (2.0.6) 137

Aspect Oriented Programming with Spring

</ aop: aspectj - aut opr oxy>

6.8.4. Using AspectJ Load-time weaving (LTW) with Spring applications

Load-time weaving (or LTW) refers to the process of weaving AspectJ aspects with an application's class files
as they are loaded into the VM. For full details on configuring load-time weaving with AspectJ, see the LTW
section of the AspectJ Development Environment Guide . We will focus here on the essentials of configuring
load-time weaving for Spring applications running on Java 5.

Load-time weaving is controlled by defining a file 'aop.xm ' in the META-INF directory. AspectJ
automatically looks for all 'META-INF/aop.xml' files visible on the classpath and configures itself based on the
aggregation of their content.

A basic META-INF/aop.xml for your application should look like this:

<! DOCTYPE aspectj PUBLIC

"-//AspectJ// DTD/ / EN' "http://ww. eclipse.org/aspectj/dtd/ aspectj.dtd">
<aspectj >
<weaver >
<include within="com xyz. nyapp..*"/>
</ weaver >

</ aspectj >

The <i ncl ude/ > element tells Aspectd which set of types should be included in the weaving process. Use the
package prefix for your application followed by "..*" (meaning ... and any type defined in a subpackage of
this) as a good default. Using the include element is important as otherwise Aspect] will look at every type
loaded in support of your application (including all the Spring library classes and many more besides).
Normally you don't want to weave these types and don't want to pay the overhead of Aspect] attempting to
match against them.

To get informational messages in your log file regarding the activity of the load-time weaver, add the following
options to the weaver element:

<! DOCTYPE aspectj PUBLIC
"-//Aspect J// DTD/ / EN' "http://ww. eclipse.org/aspectj/dtd/ aspectj.dtd">

<aspectj >
<weaver
opti ons="-showéavel nf o
- XmessageHand| er Cl ass: or g. spri ngf ramewor k. aop. aspectj . Aspect JWeaver MessageHand! er " >
<i nclude within="com xyz. nyapp..*"/>
</ weaver >
</ aspectj >

Finally, to control exactly which aspects are used, you can use the aspects element. By default all defined
aspects are used for weaving (spring-aspects.jar contains a META-INF/aop.xml file that defines the
configuration and transaction aspects). If you were using spr i ng- aspects. j ar, but only want the configuration
support and not the transaction support you could specify this as follows:

<! DOCTYPE aspectj PUBLIC
"-//Aspect J// DTD/ / EN' "http://ww. eclipse. org/aspectj/dtd/ aspectj.dtd">

<aspectj >
<weaver
opti ons="-showeavel nf o - XmessageHandl er G ass: or g. spri ngf ranmewor k. aop. aspect j . Aspect JWeaver MessageHand! er " >
<i nclude within="com xyz. nyapp..*"/>
</ weaver >
<aspect s>
<i nclude within="org. springfranework. beans. factory. aspectj. Annot ati onBeanConf i gur er Aspect "/ >

Spring Framework (2.0.6) 138

http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html
http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html

Aspect Oriented Programming with Spring

</ aspect s>
</ aspectj >

On the Java 5 platform, load-time weaving is enabled by specifying the following VM argument when
launching the Java virtual machine:

-javaagent: <pat h-to-aj | i bs>/ aspectjweaver.j ar

6.9. Further Resources

More information on AspectJ can be found at the AspectJ home page.

The book Eclipse Aspectd by Adrian Colyer et. a. (Addison-Wesley, 2005) provides a comprehensive
introduction and reference for the AspectJ language.

The excellent Aspectd in Action by Ramnivas Laddad (Manning, 2003) comes highly recommended as an
introduction to AOP; the focus of the book is on AspectJ, but alot of general AOP themes are explored in some
depth.

Spring Framework (2.0.6) 139

http://www.eclipse.org/aspectj

Chapter 7. Spring AOP APIs

7.1. Introduction

The previous chapter described the Spring 2.0 support for AOP using @Aspect] and schema-based aspect
definitions. In this chapter we discuss the lower-level Spring AOP APIs and the AOP support used in Spring
1.2 applications. For new applications, we recommend the use of the Spring 2.0 AOP support described in the
previous chapter, but when working with existing applications, or when reading books and articles, you may
come across Spring 1.2 style examples. Spring 2.0 is fully backwards compatible with Spring 1.2 and
everything described in this chapter is fully supported in Spring 2.0.

7.2. Pointcut APl in Spring

Let'slook at how Spring handles the crucial pointcut concept.

7.2.1. Concepts

Spring's pointcut model enables pointcut reuse independent of advice types. It's possible to target different
advice using the same pointcut.

The or g. spri ngf ramewor k. aop. Poi nt cut interface is the central interface, used to target advices to particular
classes and methods. The complete interface is shown below:

public interface Pointcut {
ClassFilter getCassFilter();

Met hodvat cher get Met hodMat cher () ;

Splitting the Poi ntcut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a"union" with another method matcher).

The d assFil ter interface is used to restrict the pointcut to a given set of target classes. If the mat ches()
method always returns true, all target classes will be matched:

public interface CassFilter {

bool ean mat ches(d ass cl azz);

The Met hodnat cher interface is normally more important. The complete interface is shown below:

public interface Methodvatcher {
bool ean mat ches(Method m Cl ass targetd ass);
bool ean i sRuntine();

bool ean mat ches(Method m Cl ass targetC ass, Object[] args);

The mat ches(Met hod, O ass) method is used to test whether this pointcut will ever match a given method on

Spring Framework (2.0.6) 140

Spring AOP APIs

atarget class. This evaluation can be performed when an AOP proxy is created, to avoid the need for atest on
every method invocation. If the 2-argument matches method returns true for a given method, and the
i sRunti me() method for the MethodMatcher returns true, the 3-argument matches method will be invoked on
every method invocation. This enables a pointcut to look at the arguments passed to the method invocation
immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their i sRuntine() method returns false. In this case, the
3-argument matches method will never be invoked.

Tip

e
If possible, try to make pointcuts static, allowing the AOP framework to cache the results of
pointcut evaluation when an AOP proxy is created.

7.2.2. Operations on pointcuts

Spring supports operations on pointcuts: notably, union and inter section.

« Union means the methods that either pointcut matches.
« |ntersection means the methods that both pointcuts match.
e Unionisusually more useful.

 Pointcuts can be composed using the static methods in the org.springframewor k.aop.support.Pointcuts class,
or using the ComposablePointcut class in the same package. However, using AspectJ pointcut expressions is
usually a simpler approach.

7.2.3. AspectJ expression pointcuts

Since 2.0, the most important type of pointcut used by Spring is
org. springframewor k. aop. aspect j . Aspect JExpr essi onPoi nt cut . This is a pointcut that uses an AspectJ
supplied library to parse an AspectJ pointcut expression string.

See the previous chapter for a discussion of supported AspectJ pointcut primitives.

7.2.4. Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the box; others are
intended to be subclassed in application-specific pointcuts.

7.2.4.1. Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method's arguments.
Static pointcuts are sufficient - and best - for most usages. It's possible for Spring to evaluate a static pointcut
only once, when a method is first invoked: after that, there is no need to evaluate the pointcut again with each
method invocation.

Let's consider some static pointcut implementations included with Spring.

7.2.4.1.1. Regular expression pointcuts

Spring Framework (2.0.6) 141

Spring AOP APIs

One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides Spring
make this possible. org. spri ngf ranmewor k. aop. support . Per | 5GRegexpMet hodPoi nt cut IS @ generic regular
expression pointcut, using Perl 5 regular expression syntax. The Per | 5RegexpMet hodPoi nt cut class depends on
Jakarta ORO for regular expression matching. Spring also provides the JdkRegexpMet hodPoi nt cut class that
uses the regular expression support in JDK 1.4+.

Using the Per | 5RegexpMet hodPoi nt cut class, you can provide a list of pattern Strings. If any of these is a
match, the pointcut will evaluate to true. (So the result is effectively the union of these pointcuts.)

The usage is shown below:

<bean i d="settersAndAbsquat ul at ePoi nt cut "
cl ass="org. spri ngf ramewor k. aop. support . Per| 5RegexpMet hodPoi nt cut " >
<property name="patterns">
<list>
<val ue>. *set . *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

Spring provides a convenience class, RegexpMet hodPoi nt cut Advi sor, that alows us to also reference an
Advice (remember that an Advice can be an interceptor, before advice, throws advice etc.). Behind the scenes,
Spring will use the JdkRegexpMethodPointcut on J2SE 1.4 or above, and will fal back to
Per | 5RegexpMet hodPoi nt cut on older VMs. The use of Per | 5RegexpMet hodPoi nt cut can be forced by setting
the perl5 property to true. Using RegexpMet hodPoi nt cut Advi sor simplifies wiring, as the one bean
encapsulates both pointcut and advice, as shown below:

<bean i d="sett er sAndAbsquat ul at eAdvi sor"
cl ass="org. spri ngf ramewor k. aop. support . RegexpMet hodPoi nt cut Advi sor ">
<property nanme="advi ce">
<ref |ocal ="beanNameOf AopAl | i ancel nterceptor"/>
</ property>
<property name="patterns">
<list>
<val ue>. *set . *</val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.

7.2.4.1.2. Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata attributes:
typically, source-level metadata.

7.2.4.2. Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method arguments, as
well as static information. This means that they must be evaluated with every method invocation; the result
cannot be cached, as arguments will vary.

The main exampleisthecontrol f1 ow pointcut.

7.2.4.2.1. Control flow pointcuts

Spring Framework (2.0.6) 142

Spring AOP APIs

Spring control flow pointcuts are conceptually similar to Aspectd cflow pointcuts, although less powerful.
(Thereis currently no way to specify that a pointcut executes below a join point matched by another pointcut.)
A control flow pointcut matches the current call stack. For example, it might fire if the join point was invoked
by a method in the com nyconpany. web package, or by the sonecal | er class. Control flow pointcuts are
specified using the or g. spri ngf r amewor k. aop. support . Cont r ol Fl owPoi nt cut class.

Note

e
Control flow pointcuts are significantly more expensive to evaluate at runtime than even other
dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic pointcuts; in Java
1.3 more than 10.

7.2.5. Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you'll probably subclass StaticM ethodMatcherPointcut, as shown
below. This requires implementing just one abstract method (although it's possible to override other methods to
customize behavior):

class TestStaticPointcut extends StaticMethodMatcher Poi ntcut {

publ i c bool ean nmat ches(Method m C ass targetC ass) {
// return true if customcriteria match

}
}

There are also superclasses for dynamic pointcuts.

Y ou can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.

7.2.6. Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in AspectJ) it's possible to
declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can be arbitrarily complex.
However, using the AspectJ pointcut expression language is recommended if possible.

Note

"9
Later versions of Spring may offer support for "semantic pointcuts' as offered by JAC: for
example, "al methods that change instance variablesin the target object.”

7.3. Advice APl in Spring

Let's now look at how Spring AOP handles advice.

7.3.1. Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique to each
advised object. This corresponds to per-class or per-instance advice.

Spring Framework (2.0.6) 143

Spring AOP APIs

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors. These do
not depend on the state of the proxied object or add new state; they merely act on the method and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state to the
proxied object.

It's possible to use amix of shared and per-instance advice in the same AOP proxy.

7.3.2. Advice types in Spring

Spring provides severa advice types out of the box, and is extensible to support arbitrary advice types. Let us
look at the basic concepts and standard advice types.

7.3.2.1. Interception around advice
The most fundamental advice typein Spring isinterception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method interception.
M ethodl nterceptors implementing around advice should implement the following interface:

public interface Methodl nterceptor extends Interceptor {

oj ect invoke(Met hodl nvocati on invocation) throws Throwabl e;

The Met hodl nvocat i on argument to the i nvoke() method exposes the method being invoked; the target join
point; the AOP proxy; and the arguments to the method. The i nvoke() method should return the invocation's
result: the return value of the join point.

A simple Met hodl nt er cept or implementation looks as follows:

public class Debugl nterceptor inplenments Methodl nterceptor {

public oject invoke(Methodl nvocation invocation) throws Throwabl e {
System out. println("Before: invocation=[" + invocation + "]");
oj ect rval = invocation. proceed();
System out. println("lnvocation returned");
return rval;

Note the call to the Methodinvocation's proceed() method. This proceeds down the interceptor chain towards
the join point. Most interceptors will invoke this method, and return its return value. However, a
Methodlnterceptor, like any around advice, can return a different value or throw an exception rather than
invoke the proceed method. However, you don't want to do this without good reason!

Note
e

Methodinterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section implement
common AOP concepts, but in a Spring-specific way. While there is an advantage in using the
most specific advice type, stick with Methodlinterceptor around advice if you are likely to want to
run the aspect in another AOP framework. Note that pointcuts are not currently interoperable
between frameworks, and the AOP Alliance does not currently define pointcut interfaces.

Spring Framework (2.0.6) 144

Spring AOP APIs

7.3.2.2. Before advice

A simpler advice type is a before advice. This does not need a Met hodl nvocat i on object, since it will only be
called before entering the method.

The main advantage of a before advice is that there is no need to invoke the proceed() method, and therefore
no possihility of inadvertently failing to proceed down the interceptor chain.

The Met hodBef or eAdvi ce interface is shown below. (Spring's APl design would allow for field before advice,
although the usual objects apply to field interception and it's unlikely that Spring will ever implement it).
public interface MethodBeforeAdvi ce extends BeforeAdvice {

voi d before(Method m Opbject[] args, Object target) throws Throwabl e;

Note the return type is voi d. Before advice can insert custom behavior before the join point executes, but
cannot change the return value. If a before advice throws an exception, this will abort further execution of the
interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked, or on the
signature of the invoked method, it will be passed directly to the client; otherwise it will be wrapped in an
unchecked exception by the AOP proxy.

An example of abefore advice in Spring, which counts all method invocations:

public class Counti ngBeforeAdvice inplenments Met hodBef or eAdvi ce {
private int count;
public void before(Method m Object[] args, Object target) throws Throwabl e {

++count ;
}

public int getCount() {
return count;
}

Tip
"9
Before advice can be used with any pointcut.

7.3.2.3. Throws advice

Throws advice is invoked after the return of the join point if the join point threw an exception. Spring offers
typed throws advice. Note that this means that the or g. spri ngf ramewor k. aop. Thr owsAdvi ce interface does
not contain any methods: it is a tag interface identifying that the given object implements one or more typed
throws advice methods. These should be in the form of:

af t er Thr owi ng([Met hod, args, target], subclassO Throwabl e)

Only the last argument is required. The method signatures may have either one or four arguments, depending
on whether the advice method is interested in the method and arguments. The following classes are examples of
throws advice.

The advice below isinvoked if aRenot eExcept i on isthrown (including subclasses):

public class Renot eThrowsAdvi ce inplements ThrowsAdvi ce {

Spring Framework (2.0.6) 145

Spring AOP APIs

public void afterThrow ng(Renpt eExcepti on ex) throws Throwabl e {
/1 Do something with renote exception

}

The following advice is invoked if a Servl et Exception is thrown. Unlike the above advice, it declares 4
arguments, so that it has access to the invoked method, method arguments and target object:

public class Servl et ThrowsAdvi ceW t hArgurment s i npl ements Thr owsAdvi ce {

public void afterThrowi ng(Method m Object[] args, Object target, ServletException ex) {
// Do something with all arguments

}

The fina example illustrates how these two methods could be used in a single class, which handles both
Renot eExcept i on and Ser vl et Except i on. Any number of throws advice methods can be combined in asingle
class.

public static class Conbi nedThrowsAdvi ce inplements ThrowsAdvi ce {

public void afterThrow ng(Renot eException ex) throws Throwabl e {
// Do something with renpte exception

}

public void afterThrow ng(Method m Object[] args, Object target, ServletException ex) {
// Do sonmething with all argunents

}

M Tip

"8

Throws advice can be used with any pointcut.

7.3.2.4. After Returning advice

An after returning advice in Spring must implement the org.springframework.aop.After ReturningAdvice
interface, shown below:
public interface AfterReturningAdvi ce extends Advice {

voi d afterReturni ng(Object returnValue, Method m nbject[] args, Object target)
t hrows Thr owabl e;

An after returning advice has access to the return value (which it cannot modify), invoked method, methods
arguments and target.

The following after returning advice counts all successful method invocations that have not thrown exceptions:

public class CountingAfterReturni ngAdvi ce inpl ements AfterReturni ngAdvi ce {
private int count;

public void afterReturning(Qoject returnValue, Method m Object[] args, bject target)
throws Throwabl e {
++count ;

}

public int getCount() {
return count;

Spring Framework (2.0.6) 146

Spring AOP APIs

This advice doesn't change the execution path. If it throws an exception, this will be thrown up the interceptor
chain instead of the return value.

Tip
“

After returning advice can be used with any pointcut.

7.3.2.5. Introduction advice
Spring treats introduction advice as a special kind of interception advice.

Introduction requires an I ntroductionAdvi sor, and an Introductionlnterceptor, implementing the
following interface:
public interface |ntroductionlnterceptor extends Methodlnterceptor {

bool ean i npl ementslinterface(C ass intf);

The i nvoke() method inherited from the AOP Alliance Met hodl nt er cept or interface must implement the
introduction: that is, if the invoked method is on an introduced interface, the introduction interceptor is
responsible for handling the method call - it cannot invoke pr oceed() .

Introduction advice cannot be used with any pointcut, as it applies only at class, rather than method, level. You
can only use introduction advice with the | nt r oduct i onAdvi sor, which has the following methods:
public interface Introducti onAdvi sor extends Advisor, |ntroductionlnfo {
ClassFilter getClassFilter();

voi d validatelnterfaces() throws Il egal Argument Exception

}
public interface Introductionlnfo {

Class[] getlnterfaces();

There is no Met hodMat cher , and hence no Poi nt cut , associated with introduction advice. Only classfiltering is
logical.

Theget I nterfaces() method returns the interfaces introduced by this advisor.
The val i dat el nterfaces() method is used internally to see whether or not the introduced interfaces can be
implemented by the configured | nt r oduct i onl nt ercept or .

Let's look at a simple example from the Spring test suite. Let's suppose we want to introduce the following
interface to one or more objects:

public interface Lockable {
voi d | ock();
voi d unl ock();
bool ean | ocked();

Spring Framework (2.0.6) 147

Spring AOP APIs

This illustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type, and call
lock and unlock methods. If we call the lock() method, we want all setter methods to throw aLockedExcept i on.
Thus we can add an aspect that provides the ability to make objects immutable, without them having any
knowledge of it: agood example of AOP.

Firstly, we'll need an I ntroductionlnterceptor that does the heavy lifting. In this case, we extend the
or g. spri ngf ramewor k. aop. support . Del egati ngl nt roducti onl nterceptor convenience class. We could
implement Introductionlnterceptor directly, but using Del egat i ngl ntroducti onl nt er cept or is best for most
Cases.

The Del egat i ngl ntroduct i onl nt er cept or iS designed to delegate an introduction to an actual implementation
of the introduced interface(s), concealing the use of interception to do so. The delegate can be set to any object
using a constructor argument; the default delegate (when the no-arg constructor is used) is this. Thus in the
example below, the delegate is the LockM xi n subclass of Del egati ngl ntroductionl nterceptor. Given a
delegate (by default itself), a Del egati ngl ntroductionlnterceptor instance looks for al interfaces
implemented by the delegate (other than Introductionlnterceptor), and will support introductions against any of
them. It's possible for subclasses such as LockM xi n to call the suppressinterface(dass intf) method to
suppress interfaces that should not be exposed. However, no matter how many interfaces an
Introductioninterceptor IS prepared to support, the IntroductionAdvisor used will control which
interfaces are actually exposed. An introduced interface will conceal any implementation of the same interface
by the target.

Thus LockMixin subclasses Del egatingl ntroductionlnterceptor and implements Lockable itself. The
superclass automatically picks up that Lockable can be supported for introduction, so we don't need to specify
that. We could introduce any number of interfacesin thisway.

Note the use of the | ocked instance variable. This effectively adds additional state to that held in the target
object.

public class LockM xi n extends Del egati ngl ntroducti onl nterceptor
i mpl enents Lockabl e {

private bool ean | ocked;

public void lock() {
this.locked = true;
}

public void unlock() {
this.locked = fal se;
}

publ i c bool ean | ocked() {
return this.|ocked;
}

public Object invoke(Methodlnvocation invocation) throws Throwabl e {
if (locked() && invocation.getMethod().getNane().indexCf("set") == 0)
t hrow new LockedException();
return super.invoke(invocation);

Often it isn't necessary to override the invoke() method: the Del egatingl ntroducti onl nt er cept or
implementation - which calls the delegate method if the method is introduced, otherwise proceeds towards the
join point - isusually sufficient. In the present case, we need to add a check: no setter method can be invoked if
in locked mode.

The introduction advisor required is simple. All it needsto do is hold adistinct LockM xi n instance, and specify

Spring Framework (2.0.6) 148

Spring AOP APIs

the introduced interfaces - in this case, just Lockabl e. A more complex example might take a reference to the
introduction interceptor (which would be defined as a prototype): in this case, there's no configuration relevant
for aLockM xi n, SO we simply create it using new.

public class LockM xi nAdvi sor extends Defaul tlntroductionAdvisor {

public LockM xi nAdvi sor () {
super (new LockM xi n(), Lockabl e.cl ass);

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It'simpossible to
use an I ntroducti onl ntercept or Without an IntroductionAdvisor.) As usua with introductions, the advisor
must be per-instance, asit is stateful. We need a different instance of LockM xi nAdvi sor, and hence LockM xi n,
for each advised object. The advisor comprises part of the advised object's state.

We can apply this advisor programmatically, using the Advi sed. addAdvi sor () method, or (the recommended
way) in XML configuration, like any other advisor. All proxy creation choices discussed below, including
"auto proxy creators," correctly handle introductions and stateful mixins.

7.4. Advisor APl in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut expression.

Apart from the special case of introductions, any advisor can be used with any advice
org. springframewor k. aop. support . Def aul t Poi nt cut Advi sor IS the most commonly used advisor class. For
example, it can be used with aMet hodl nt er cept or , Bef or eAdvi ce Of Thr owsAdvi ce.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you could use a
interception around advice, throws advice and before advice in one proxy configuration: Spring will
automatically create the necessary interceptor chain.

7.5. Using the ProxyFactoryBean to create AOP proxies

If you're using the Spring 1oC container (an ApplicationContext or BeanFactory) for your business objects -
and you should be! - you will want to use one of Spring's AOP FactoryBeans. (Remember that a factory bean
introduces alayer of indirection, enabling it to create objects of a different type.)

5 Note
“a

The Spring 2.0 AOP support aso uses factory beans under the covers.

The basic way to create an AOP proxy in Spring is to use the
org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over the pointcuts and
advice that will apply, and their ordering. However, there are simpler options that are preferable if you don't
need such control.

7.5.1. Basics

The proxyFact or yBean, like other Spring Fact or yBean implementations, introduces a level of indirection. If
you define a Pr oxyFact or yBean With name f oo, what objects referencing f oo see is not the Pr oxyFact or yBean

Spring Framework (2.0.6) 149

Spring AOP APIs

instance itself, but an object created by the ProxyFact or yBean's implementation of the get Obj ect () method.
This method will create an AOP proxy wrapping atarget object.

One of the most important benefits of using a Pr oxyFact or yBean or another loC-aware class to create AOP
proxies, is that it means that advices and pointcuts can also be managed by 1oC. This is a powerful feature,
enabling certain approaches that are hard to achieve with other AOP frameworks. For example, an advice may
itself reference application objects (besides the target, which should be available in any AOP framework),
benefiting from all the pluggability provided by Dependency Injection.

7.5.2. JavaBean properties

In common with most Fact or yBean implementations provided with Spring, the ProxyFact oryBean Class is
itself a JavaBean. Its properties are used to:

« Specify the target you want to proxy.

» Specify whether to use CGLIB (see below and also the section entitled Section 7.5.3, “JDK- and
CGLIB-based proxies’).

Some key properties are inherited from or g. spri ngf r amewor k. aop. f r amewor k. ProxyConf i g (the superclass
for all AOP proxy factoriesin Spring). These key properties include:

e proxyTargetd ass: true if the target class is to be proxied, rather than the target class interfaces. If this
property value is set to true, then CGLIB proxies will be created (but see also below the section entitled
Section 7.5.3, “JDK- and CGLIB-based proxies’).

 optim ze: controls whether or not aggressive optimizations are applied to proxies created via CGLIB. One
should not blithely use this setting unless one fully understands how the relevant AOP proxy handles
optimization. Thisis currently used only for CGLIB proxies; it has no effect with JIDK dynamic proxies.

» frozen: if aproxy configuration isfrozen, then changes to the configuration are no longer allowed. Thisis
useful both as a slight optimization and for those cases when you don't want callers to be able to manipulate
the proxy (viathe Advi sed interface) after the proxy has been created. The default value of this property is
f al se, SO changes such as adding additional advice are allowed.

e exposePr oxy: determines whether or not the current proxy should be exposed in a Thr eadLocal S0 that it can
be accessed by the target. If atarget needs to obtain the proxy and the exposePr oxy property is set to t rue,
the target can use the AopCont ext . cur rent Proxy() method.

* aopProxyFact ory: the implementation of AcpProxyFact ory to use. Offers a way of customizing whether to
use dynamic proxies, CGLIB or any other proxy strategy. The default implementation will choose dynamic
proxies or CGLIB appropriately. There should be no need to use this property; it is intended to allow the
addition of new proxy typesin Spring 1.1.

Other properties specific to Pr oxyFact or yBean include:

e proxylnterfaces: array of String interface names. If this isn't supplied, a CGLIB proxy for the target class
will be used (but see also below the section entitled Section 7.5.3, “JDK- and CGLIB-based proxies”).

e interceptorNanmes: String array of Advisor, interceptor or other advice names to apply. Ordering is
significant, on afirst come-first served basis. That isto say that the first interceptor in the list will be the first
to be able to intercept the invocation.

Spring Framework (2.0.6) 150

Spring AOP APIs

The names are bean names in the current factory, including bean names from ancestor factories. You can't
mention bean references here since doing so would result in the ProxyFact or yBean ignoring the singleton
setting of the advice.

You can append an interceptor name with an asterisk (*). This will result in the application of all advisor
beans with names starting with the part before the asterisk to be applied. An example of using this feature
can be found in Section 7.5.6, “Using 'global’ advisors’.

¢ singleton: whether or not the factory should return a single object, no matter how often the get j ect ()
method is called. Several Fact or yBean implementations offer such a method. The default value is t rue. If
you want to use stateful advice - for example, for stateful mixins - use prototype advices along with a
singleton value of f al se.

7.5.3. JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the Pr oxyFact or yBean chooses to create one of
either aJDK- and CGLIB-based proxy for a particular target object (that is to be proxied).

Note

"
The behavior of the ProxyFact oryBean with regard to creating JDK- or CGLIB-based proxies
changed between versions 1.2.x and 2.0 of Spring. The ProxyFact or yBean how exhibits similar
semantics with regard to auto-detecting interfaces as those of the Transact i onPr oxyFact or yBean
class.

If the class of a target object that is to be proxied (hereafter simply referred to as the target class) doesn't
implement any interfaces, then a CGLIB-based proxy will be created. Thisis the easiest scenario, because JDK
proxies are interface based, and no interfaces means JDK proxying isn't even possible. One simply plugsin the
target bean, and specifies the list of interceptors viathei nt er cept or Names property. Note that a CGLIB-based
proxy will be created even if the pr oxyTar get O ass property of the ProxyFact or yBean has been set to f al se.
(Obvioudly this makes no sense, and is best removed from the bean definition because it is at best redundant,
and at worst confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is created depends on the
configuration of the Pr oxyFact or yBean.

If the proxyTar get d ass property of the ProxyFact or yBean has been set to tr ue, then a CGLIB-based proxy
will be created. This makes sense, and is in keeping with the principle of least surprise. Even if the
proxyl nterfaces property of the ProxyFact oryBean has been set to one or more fully qualified interface
names, the fact that the proxyTar get d ass property is set to true will cause CGLIB-based proxying to be in
effect.

If the proxyl nt er f aces property of the ProxyFact or yBean has been set to one or more fully qualified interface
names, then a JDK-based proxy will be created. The created proxy will implement all of the interfaces that
were specified in the proxyl nterfaces property; if the target class happens to implement a whole lot more
interfaces than those specified in the proxyl nter f aces property, that is all well and good but those additional
interfaces will not be implemented by the returned proxy.

If the proxyl nt er f aces property of the Pr oxyFact or yBean has not been set, but the target class does implement
one (or more) interfaces, then the Pr oxyFact or yBean will auto-detect the fact that the target class does actually
implement at least one interface, and a JDK-based proxy will be created. The interfaces that are actually

Spring Framework (2.0.6) 151

Spring AOP APIs

proxied will be all of the interfaces that the target class implements; in effect, this is the same as simply
supplying a list of each and every interface that the target class implements to the proxyl nt er f aces property.
However, it is significantly less work, and |ess prone to typos.

7.5.4. Proxying interfaces

Let'slook at asimple example of Pr oxyFact or yBean in action. This example involves:

A target bean that will be proxied. Thisisthe "personTarget" bean definition in the example below.
e An Advisor and an Interceptor used to provide advice.

« An AOP proxy bean definition specifying the target object (the personTarget bean) and the interfaces to
proxy, along with the advices to apply.

<bean i d="personTarget" class="com nyconpany. Personl npl ">
<property nanme="nanme"><val ue>Tony</ val ue></ property>
<property nanme="age"><val ue>51</val ue></ property>

</ bean>

<bean id="nmyAdvi sor" class="com nmyconpany. MyAdvi sor ">
<property name="soneProperty"><val ue>Custom string property val ue</val ue></ property>
</ bean>

<bean i d="debugl nterceptor" class="org. springfranework. aop. i nterceptor.Debuglnterceptor">
</ bean>

<bean i d="person"
cl ass="org. spri ngfranmewor k. aop. f r amewor k. Pr oxyFact or yBean" >
<property name="proxyl nterfaces"><val ue>com nyconpany. Per son</ val ue></ property>

<property name="target"><ref |ocal ="personTarget"/></property>
<property nanme="inter cept or Nanes" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

Note that thei nt er cept or Nanres property takes alist of String: the bean names of the interceptor or advisorsin
the current factory. Advisors, interceptors, before, after returning and throws advice objects can be used. The
ordering of advisorsis significant.

Note

-

e

Y ou might be wondering why the list doesn't hold bean references. The reason for thisis that if the
ProxyFactoryBean's singleton property is set to false, it must be able to return independent proxy
instances. If any of the advisors is itself a prototype, an independent instance would need to be
returned, so it's necessary to be able to obtain an instance of the prototype from the factory; holding
areference isn't sufficient.

The "person" bean definition above can be used in place of a Person implementation, as follows:

Person person = (Person) factory.getBean("person");

Other beans in the same |0C context can express a strongly typed dependency on it, as with an ordinary Java
object:

Spring Framework (2.0.6) 152

Spring AOP APIs

<bean i d="personUser" cl ass="com myconpany. PersonUser" >
<property name="person"><ref |ocal ="person" /></property>
</ bean>

The pPersonUser class in this example would expose a property of type Person. As far as it's concerned, the
AOP proxy can be used transparently in place of a"rea" person implementation. However, its class would be a
dynamic proxy class. It would be possible to cast it to the Advi sed interface (discussed below).

It's possible to conceal the distinction between target and proxy using an anonymous inner bean, as follows.
Only the Pr oxyFact or yBean definition is different; the advice isincluded only for completeness:

<bean i d="nyAdvi sor" cl ass="com nyconpany. MyAdvi sor ">
<property name="sonmeProperty"><val ue>Custom string property val ue</val ue></ property>
</ bean>

<bean i d="debugl nterceptor" class="org. springfranework. aop. i nterceptor. Debuglnterceptor"/>

<bean i d="person" cl ass="org. spri ngframework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="proxyl nterfaces"><val ue>com nyconpany. Per son</ val ue></ property>
<l-- Use inner bean, not l|local reference to target -->
<property name="target">
<bean cl ass="com nyconpany. Per sonl npl ">
<property name="nanme"><val ue>Tony</val ue></ property>
<property name="age"><val ue>51</val ue></ property>
</ bean>
</ property>
<property name="inter cept or Nanes" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

This has the advantage that there's only one object of type Person: useful if we want to prevent users of the
application context from obtaining a reference to the un-advised object, or need to avoid any ambiguity with
Spring 10C autowiring. There's also arguably an advantage in that the ProxyFactoryBean definition is
self-contained. However, there are times when being able to obtain the un-advised target from the factory might
actually be an advantage: for example, in certain test scenarios.

7.5.5. Proxying classes

What if you need to proxy aclass, rather than one or more interfaces?

Imagine that in our example above, there was no Per son interface: we needed to advise a class called Per son
that didn't implement any business interface. In this case, you can configure Spring to use CGLIB proxying,
rather than dynamic proxies. Simply set the proxyTar get O ass property on the ProxyFactoryBean above to
true. While it's best to program to interfaces, rather than classes, the ability to advise classes that don't
implement interfaces can be useful when waorking with legacy code. (In general, Spring isn't prescriptive. While
it makes it easy to apply good practices, it avoids forcing a particular approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this generated
subclass to delegate method calls to the original target: the subclass is used to implement the Decorator pattern,
weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to consider:

Spring Framework (2.0.6) 153

Spring AOP APIs

* Fi nal methods can't be advised, as they can't be overridden.
* You'l need the CGLIB 2 binaries on your classpath; dynamic proxies are available with the JDK.

There's little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0,
dynamic proxies are dightly faster. However, this may change in the future. Performance should not be a
decisive consideration in this case.

7.5.6. Using 'global’ advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part before the
asterisk, will be added to the advisor chain. This can come in handy if you need to add a standard set of ‘global’
advisors:

<bean id="proxy" class="org.springfranmework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="target" ref="service"/>
<property nanme="inter cept or Nanes" >
<list>
<val ue>gl obal *</ val ue>
</list>
</ property>
</ bean>

<bean i d="gl obal _debug" cl ass="org. spri ngfranmework. aop. i nt er cept or. Debugl nt erceptor"/>
<bean i d="gl obal _performance" class="org. springfranmework. aop. i nterceptor.Performancelonitorlnterceptor"/>

7.6. Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy definitions. The use
of parent and child bean definitions, along with inner bean definitions, can result in much cleaner and more
concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean i d="t xProxyTenpl ate" abstract="true"
cl ass="org. springframework.transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transactionAttri butes">
<pr ops>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

Thiswill never be instantiated itself, so may actually be incomplete. Then each proxy which needsto be created
isjust a child bean definition, which wraps the target of the proxy as an inner bean definition, since the target
will never be used on its own anyway.

<bean i d="nyService" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngf ramewor k. sanpl es. MySer vi cel npl ">
</ bean>
</ property>
</ bean>

It is of course possible to override properties from the parent template, such as in this case, the transaction

Spring Framework (2.0.6) 154

Spring AOP APIs

propagation settings:

<bean i d="nySpeci al Servi ce" parent="txProxyTenpl ate">
<property nanme="target">
<bean cl ass="org. spri ngf ramewor k. sanpl es. MySpeci al Servi cel npl ">
</ bean>
</ property>
<property name="transactionAttri butes">
<pr ops>
<prop key="get*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="find*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="I|oad*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="st ore*" >PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute, as described previously, so that it may not actually ever be instantiated. Application contexts
(but not simple bean factories) will by default pre-instantiate all singletons. It is therefore important (at least for
singleton beans) that if you have a (parent) bean definition which you intend to use only as atemplate, and this
definition specifies a class, you must make sure to set the abstract attribute to true, otherwise the application
context will actually try to pre-instantiate it.

7.7. Creating AOP proxies programmatically with the
ProxyFactory

It's easy to create AOP proxies programmaticaly using Spring. This enables you to use Spring AOP without
dependency on Spring loC.

The following listing shows creation of a proxy for a target object, with one interceptor and one advisor. The
interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFact ory(myBusi nesslnterfacel npl);
factory. addl nt er cept or (myMet hodl nt erceptor);
factory. addAdvi sor (myAdvi sor) ;

My/Busi nesslinterface tb = (M/Busi nesslnterface) factory. getProxy();

The first step is to construct an object of type or g. spri ngf r amewor k. aop. f r amewor k. ProxyFact ory. YouU can
create this with a target object, as in the above example, or specify the interfaces to be proxied in an alternate
constructor.

You can add interceptors or advisors, and manipulate them for the life of the ProxyFactory. If you add an
I ntroductionl nterceptionAroundAdvisor you can cause the proxy to implement additional interfaces.

There are also convenience methods on ProxyFactory (inherited from Advi sedSuppor t) which allow you to add
other advice types such as before and throws advice. AdvisedSupport is the superclass of both ProxyFactory
and ProxyFactoryBean.

Tip

"8
Integrating AOP proxy creation with the 10C framework is best practice in most applications. We
recommend that you externalize configuration from Java code with AOP, asin general.

Spring Framework (2.0.6) 155

Spring AOP APIs

7.8. Manipulating advised objects

However you create AOP proxies, you can manipulate them using the
org. spri ngfranmewor k. aop. f ramewor k. Advi sed interface. Any AOP proxy can be cast to this interface,
whichever other interfaces it implements. This interface includes the following methods:

Advi sor[] get Advi sors();

voi d addAdvi ce(Advi ce advi ce) throws AopConfi gExcepti on;

voi d addAdvi ce(int pos, Advice advice)
t hrows AopConfi gExcepti on;

voi d addAdvi sor (Advi sor advi sor) throws AopConfi gExcepti on;

voi d addAdvi sor (i nt pos, Advisor advisor) throws AopConfi gExcepti on;

int indexOf (Advi sor advisor);

bool ean renobveAdvi sor (Advi sor advi sor) throws AopConfi gException;
voi d renmoveAdvi sor (i nt index) throws AopConfi gExcepti on;
bool ean repl aceAdvi sor (Advi sor a, Advisor b) throws AopConfi gException;

bool ean i sFrozen();

The get Advi sor s() method will return an Advisor for every advisor, interceptor or other advice type that has
been added to the factory. If you added an Advisor, the returned advisor at thisindex will be the object that you
added. If you added an interceptor or other advice type, Spring will have wrapped this in an advisor with a
pointcut that always returns true. Thus if you added a Met hodl nt er cept or , the advisor returned for this index
will be an Def aul t Poi nt cut Advi sor returning your Met hodl nt er cept or and a pointcut that matches all classes
and methods.

The addAdvi sor () methods can be used to add any Advisor. Usually the advisor holding pointcut and advice
will be the generic Def aul t Poi nt cut Advi sor, which can be used with any advice or pointcut (but not for
introductions).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created. The only
restriction is that it's impossible to add or remove an introduction advisor, as existing proxies from the factory
will not show the interface change. (Y ou can obtain a new proxy from the factory to avoid this problem.)

A simple example of casting an AOP proxy to the Advi sed interface and examining and manipulating its
advice:

Advi sed advi sed = (Advi sed) nyQnject;

Advi sor[] advi sors = advi sed. get Advi sors();

i nt ol dAdvi sor Count = advi sors. | ength;

System out . println(ol dAdvi sor Count + " advi sors");

/1 Add an advice like an interceptor w thout a pointcut

/1 WIIl match all proxied methods

// Can use for interceptors, before, after returning or throws advice
advi sed. addAdvi ce(new Debugl nterceptor());

// Add sel ective advice using a pointcut
advi sed. addAdvi sor (new Def aul t Poi nt cut Advi sor (mySpeci al Poi nt cut, myAdvice));

assert Equal s(" Added two advi sors",
ol dAdvi sor Count + 2, advi sed. get Advi sors().length);

Spring Framework (2.0.6) 156

Spring AOP APIs

Note

It's questionable whether it's advisable (no pun intended) to modify advice on a business object in
production, although there are no doubt legitimate usage cases. However, it can be very useful in
development: for example, in tests. | have sometimes found it very useful to be able to add test
code in the form of an interceptor or other advice, getting inside a method invocation | want to test.
(For example, the advice can get inside a transaction created for that method: for example, to run
SQL to check that a database was correctly updated, before marking the transaction for roll back.)

Depending on how you created the proxy, you can usually set a frozen flag, in which case the Advi sed
i sFrozen() method will return true, and any attempts to modify advice through addition or removal will result
in an AopConfi gExcepti on. The ability to freeze the state of an advised object is useful in some cases, for
example, to prevent calling code removing a security interceptor. It may also be used in Spring 1.1 to alow
aggressive optimization if runtime advice modification is known not to be required.

7.9. Using the "autoproxy" facility

So far we've considered explicit creation of AOP proxies using a Pr oxyFact or yBean oOr similar factory bean.

Spring also alows us to use "autoproxy" bean definitions, which can automatically proxy selected bean
definitions. Thisis built on Spring "bean post processor” infrastructure, which enables modification of any bean
definition as the container |oads.

In this model, you set up some specia bean definitions in your XML bean definition file to configure the auto
proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't need to use
Pr oxyFact or yBean.

There are two ways to do this:

» Using an autoproxy creator that refers to specific beans in the current context.

* A gpecial case of autoproxy creation that deserves to be considered separately; autoproxy creation driven by
source-level metadata attributes.

7.9.1. Autoproxy bean definitions

The org. spri ngf ramewor k. aop. f ramewor k. aut opr oxy package provides the following standard autoproxy
creators.

7.9.1.1. BeanNameAutoProxyCreator

The BeanNameAutoProxyCreator automatically creates AOP proxies for beans with names matching literal
values or wildcards.

<bean cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. BeanNaneAut oPr oxyCr eat or " >
<property nanme="beanNanes" ><val ue>j dk*, onl yJdk</ val ue></ property>
<property nanme="inter cept or Nanes" >
<list>
<val ue>nyl nt er cept or </ val ue>
</list>
</ property>
</ bean>

Spring Framework (2.0.6) 157

Spring AOP APIs

As with ProxyFact or yBean, there is an i nt er cept or Nanes property rather than a list of interceptors, to allow
correct behavior for prototype advisors. Named "interceptors' can be advisors or any advice type.

As with auto proxying in general, the main point of using BeanNameAut oPr oxyCr eat or IS t0 apply the same
configuration consistently to multiple objects, with minimal volume of configuration. It is a popular choice for
applying declarative transactions to multiple objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example, are plain old
bean definitions with the target class. An AOP proxy will be created automatically by the
BeanNameAut oPr oxyCr eat or . The same advice will be applied to al matching beans. Note that if advisors are
used (rather than the interceptor in the above example), the pointcuts may apply differently to different beans.

7.9.1.2. DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is Def aul t Advi sor Aut oPr oxyCr eat or . This will
automagically apply eligible advisors in the current context, without the need to include specific bean namesin
the autoproxy advisor's bean definition. It offers the same merit of consistent configuration and avoidance of
duplication as BeanNameAut oPr oxyCr eat or .

Using this mechanism involves:

e Specifying aDef aul t Advi sor Aut oPr oxyCr eat or bean definition.

» Specifying any number of Advisors in the same or related contexts. Note that these must be Advisors, not
just interceptors or other advices. Thisis necessary because there must be a pointcut to evaluate, to check the
eligibility of each advice to candidate bean definitions.

The Def aul t Advi sor Aut oPr oxyCr eat or Will automatically evaluate the pointcut contained in each advisor, to
see what (if any) advice it should apply to each business object (such as "businessObjectl" and
"businessObject2” in the example).

This means that any number of advisors can be applied automatically to each business object. If no pointcut in
any of the advisors matches any method in a business object, the object will not be proxied. As bean definitions
are added for new business objects, they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain an
un-advised object. Calling getBean("businessObject1") on this ApplicationContext will return an AOP proxy,
not the target business object. (The "inner bean" idiom shown earlier also offers this benefit.)

<bean cl ass="org. spri ngframewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springframework.transaction.interceptor. Transacti onAttri buteSourceAdvi sor" >
<property nanme="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean i d="cust omAdvi sor" cl ass="com nyconpany. MyAdvi sor"/ >
<bean i d="busi nessObj ect 1" cl ass="com nmyconpany. Busi nessObj ect 1" >
<l-- Properties omtted -->

</ bean>

<bean i d="busi nessObj ect 2" cl ass="com nyconpany. Busi nessObj ect 2"/ >

The Def aul t Advi sor Aut oPr oxyCr eat or IS very useful if you want to apply the same advice consistently to
many business objects. Once the infrastructure definitions are in place, you can simply add new business
objects without including specific proxy configuration. Y ou can also drop in additional aspects very easily - for

Spring Framework (2.0.6) 158

Spring AOP APIs

example, tracing or performance monitoring aspects - with minimal change to configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so that only
certain advisors are evaluated, allowing use of multiple, differently configured, AdvisorAutoProxyCreators in
the same factory) and ordering. Advisors can implement the or g. spri ngf r amewor k. cor e. Or der ed interface to
ensure correct ordering if this is an issue. The TransactionAttributeSourceAdvisor used in the above example
has a configurable order value; the default setting is unordered.

7.9.1.3. AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own autoproxy creators by
subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to the
behavior of the framework Def aul t Advi sor Aut oPr oxyCr eat or .

7.9.2. Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a similar programming
model to .NET Servi cedConponent s. Instead of using XML deployment descriptors as in EJB, configuration
for transaction management and other enterprise servicesis held in source-level attributes.

In this case, you use the Def aul t Advi sor Aut oPr oxyCr eat or, in combination with Advisors that understand
metadata attributes. The metadata specifics are held in the pointcut part of the candidate advisors, rather than in
the autoproxy creation class itself.

Thisisreally a specia case of the Def aul t Advi sor Aut oPr oxyCr eat or, but deserves consideration on its own.
(The metadata-aware code is in the pointcuts contained in the advisors, not the AOP framework itself.)

The/attribut es directory of the JPetStore sample application shows the use of attribute-driven autoproxying.
In this case, there's no need to use the Tr ansact i onPr oxyFact or yBean. Simply defining transactional attributes
on business objects is sufficient, because of the use of metadata-aware pointcuts. The bean definitions include
the following code, in/ WEB- | NF/ decl ar at i veSer vi ces. xni . Note that this is generic, and can be used outside
the JPetStore:

<bean cl ass="org. spri ngfranmewor k. aop. f ranmewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springfranmework.transaction.interceptor. Transacti onAttri buteSourceAdvi sor">
<property name="transactionlnterceptor" ref="transacti onlnterceptor"/>
</ bean>

<bean id="transactionl nterceptor"”
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transactionAttri buteSource">
<bean cl ass="org. springfranmework.transaction.interceptor.AttributesTransactionAttri buteSource">
<property name="attributes" ref="attributes"/>
</ bean>
</ property>
</ bean>

<bean id="attributes" class="org.springfranework. netadata. commons. CormonsAttri butes"/>

The Def aul t Advi sor Aut oPr oxyCr eat or bean definition (the name is not significant, hence it can even be
omitted) will pick up al eligible pointcuts in the current application context. In this case, the
"transactionAdvisor" bean definition, of type Transacti onAttri but eSour ceAdvi sor, Will apply to classes or
methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor depends on a
Transactionlnterceptor, via constructor dependency. The example resolves this via autowiring. The
AttributesTransactionAttributeSource depends on an implementation of the

Spring Framework (2.0.6) 159

Spring AOP APIs

org. springframewor k. net adat a. Attri but es interface. In this fragment, the "attributes’ bean satisfies this,
using the Jakarta Commons Attributes API to obtain attribute information. (The application code must have
been compiled using the Commons Attributes compilation task.)

The /annotation directory of the JPetStore sample application contains an analogous example for
auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic detection of
Spring's Tr ansact i onal annotation, leading to implicit proxies for beans containing that annotation:

<bean cl ass="org. spri ngframewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springframework. transaction.interceptor. Transacti onAttri buteSourceAdvi sor" >
<property name="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean i d="transactionlnterceptor"
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transacti onAttri buteSource">
<bean cl ass="org. springframework.transaction. annotati on. Annot ati onTransacti onAttri buteSource"/>
</ property>
</ bean>

The Transacti onl nt er cept or defined here depends on a Pl at f or niTr ansact i onManager definition, which is
not included in this generic file (athough it could be) because it will be specific to the application's transaction
requirements (typically JTA, asin this example, or Hibernate, JDO or JDBC):

<bean i d="transacti onManager"
cl ass="org. springframework. transaction.jta.JtaTransacti onManager"/ >

Tip

If you require only declarative transaction management, using these generic XML definitions will
result in Spring automatically proxying all classes or methods with transaction attributes. You
won't need to work directly with AOP, and the programming model is similar to that of .NET
ServicedComponents.

This mechanism is extensible. It's possible to do autoproxying based on custom attributes. Y ou need to:

« Define your custom attribute.

« Specify an Advisor with the necessary advice, including a pointcut that is triggered by the presence of the
custom attribute on a class or method. You may be able to use an existing advice, merely implementing a
static pointcut that picks up the custom attribute.

It's possible for such advisors to be unique to each advised class (for example, mixins): they simply need to be
defined as prototype, rather than singleton, bean definitions. For example, the LockM xi n introduction
interceptor from the Spring test suite, shown above, could be used in conjunction with an attribute-driven
pointcut to target a mixin, as shown here. We use the generic Def aul t Poi nt cut Advi sor, configured using
JavaBean properties:

<bean id="1ockM xi n" cl ass="org. spri ngfranmewor k. aop. LockM xi n"
scope="pr ot otype"/ >

<bean i d="1| ockabl eAdvi sor" cl ass="org. spri ngfranmewor k. aop. support. Def aul t Poi nt cut Advi sor"
scope="pr ot ot ype" >
<property name="pointcut" ref="nyAttributeAwarePointcut"/>
<property name="advi ce" ref="IockM xin"/>
</ bean>

Spring Framework (2.0.6) 160

Spring AOP APIs

<bean i d="anyBean" cl ass="anycl ass" ...

If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the mixin will be
applied. Note that both 1ockMxin and |ockabl eAdvisor definitions are prototypes. The
nyAttri but eAwar ePoi nt cut pointcut can be a singleton definition, as it doesn't hold state for individual
advised objects.

7.10. Using TargetSources

Spring offers the concept of a TargetSource, expressed in the org. spri ngf ranmewor k. aop. Tar get Sour ce
interface. This interface is responsible for returning the "target object” implementing the join point. The
Tar get Sour ce implementation is asked for a target instance each time the AOP proxy handles a method
invocation.

Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides a
powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a pooling
TargetSource can return a different target instance for each invocation, using a pool to manage instances.

If you do not specify a TargetSource, a default implementation is used that wraps a local object. The same
target is returned for each invocation (as you would expect).

Let'slook at the standard target sources provided with Spring, and how you can use them.
Tip
"9
When using a custom target source, your target will usually need to be a prototype rather than a
singleton bean definition. This allows Spring to create a new target instance when required.

7.10.1. Hot swappable target sources

The org. springf ramewor k. aop. t ar get . Hot Swappabl eTar get Sour ce exists to alow the target of an AOP
proxy to be switched while allowing callers to keep their referencesto it.

Changing the target source's target takes effect immediately. The Hot Swappabl eTar get Sour ce IS threadsafe.

Y ou can change the target viathe swap() method on HotSwappableTargetSource as follows:

Hot Swappabl eTar get Sour ce swapper =
(Hot Swappabl eTar get Sour ce) beanFact ory. get Bean("swapper");
Obj ect ol dTarget = swapper.swap(newTarget);

The XML definitions required ook as follows:

<bean id="initial Target" class="myconpany.d dTarget"/>

<bean i d="swapper" cl ass="org. springfranmework. aop.target. Hot Swappabl eTar get Sour ce" >
<constructor-arg ref="initial Target"/>
</ bean>

<bean i d="swappabl e" cl ass="org. spri ngfranewor k. aop. f ranewor k. ProxyFact or yBean" >
<property nanme="t ar get Sour ce" ref="swapper"/>

Spring Framework (2.0.6) 161

Spring AOP APIs

</ bean>

The above swap() call changes the target of the swappable bean. Clients who hold a reference to that bean will
be unaware of the change, but will immediately start hitting the new target.

Although this example doesn't add any advice - and it's not necessary to add advice to use a Tar get Sour ce - Of
course any Tar get Sour ce can be used in conjunction with arbitrary advice.

7.10.2. Pooling target sources

Using a pooling target source provides a similar programming model to statel ess session EJBs, in which a pool
of identical instances is maintained, with method invocations going to free objectsin the pool.

A crucia difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to any
POJO. Aswith Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Jakarta Commons Pool 1.3, which provides afairly efficient pooling
implementation. Y ou'll need the commons-pool Jar on your application's classpath to use this feature. It's also
possible to subclass or g. spri ngf r amewor k. aop. t ar get . Abst ract Pool i ngTar get Sour ce t0 support any other
pooling API.

Sample configuration is shown below:

<bean i d="busi nessObj ect Target" cl ass="com nyconpany. MyBusi nessObj ect "
scope="pr ot ot ype" >
... properties omtted
</ bean>

<bean i d="pool Tar get Sour ce" cl ass="org. spri ngfranmewor k. aop. t ar get . CommonsPool Tar get Sour ce" >
<property nanme="t ar get BeanNane" val ue="busi nessQbj ect Target"/>
<property name="nmaxSi ze" val ue="25"/>

</ bean>

<bean i d="busi nessObj ect" cl ass="org. spri ngfranmework. aop. f ramewor k. Pr oxyFact or yBean" >
<property nanme="t ar get Sour ce" ref="pool Target Source"/>
<property name="interceptorNanes" val ue="nylnterceptor"/>

</ bean>

Note that the target object - "businessObjectTarget" in the example - must be a prototype. This allows the
Pool i ngTar get Sour ce implementation to create new instances of the target to grow the pool as necessary. See
the Javadoc for Abstract Pool i ngTar get Source and the concrete subclass you wish to use for information
about it's properties: maxSize is the most basic, and always guaranteed to be present.

In this case, "mylnterceptor” is the name of an interceptor that would need to be defined in the same 10C
context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and no
other advice, don't set the interceptorNames property at all.

It's possible to configure Spring so as to be able to cast any pooled object to the
org. springframewor k. aop. t ar get . Pool i ngConfig interface, which exposes information about the
configuration and current size of the pool through an introduction. Y ou'll need to define an advisor like this:

<bean i d="pool Confi gAdvi sor" cl ass="org. spri ngfranework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >

<property nanme="t arget Cbj ect" ref="pool Target Source"/>
<property nanme="t ar get Met hod" val ue="get Pool i ngConfi gM xi n"/ >
</ bean>

Spring Framework (2.0.6) 162

Spring AOP APIs

This advisor is obtained by calling a convenience method on the Abst r act Pool i ngTar get Sour ce class, hence
the use of MethodlnvokingFactoryBean. This advisor's name (" pool ConfigAdvisor" here) must be in the list of
interceptors namesin the ProxyFactoryBean exposing the pooled object.

The cast will ook as follows:

Pool i ngConfi g conf = (PoolingConfig) beanFactory. get Bean("busi nessObject");
Systemout. println("Max pool size is " + conf.get MaxSi ze());

Note

Pooling stateless service objects is not usually necessary. We don't believe it should be the default
choice, as most stateless objects are naturally thread safe, and instance pooling is problematic if
resources are cached.

Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any autoproxy
creator.

7.10.3. Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new instance of the
target will be created on every method invocation. Although the cost of creating a new object isn't high in a
modern JVM, the cost of wiring up the new object (satisfying its 1oC dependencies) may be more expensive.
Thus you shouldn't use this approach without very good reason.

To do this, you could modify the pool Tar get Sour ce definition shown above as follows. (I've also changed the
name, for clarity.)

<bean i d="prot ot ypeTar get Source" cl ass="org. spri ngfranmewor k. aop. target. Prot ot ypeTar get Sour ce" >
<property name="t ar get BeanNanme" ref="busi nessObj ect Target"/>
</ bean>

There's only one property: the name of the target bean. Inheritance is used in the TargetSource implementations
to ensure consistent naming. As with the pooling target source, the target bean must be a prototype bean
definition.

7.10.4. ThreadLocal target sources

ThreadLocal target sources are useful if you need an object to be created for each incoming request (per thread
that is). The concept of a ThreadLocal provide a JIDK-wide facility to transparently store resource alongside a
thread. Setting up a Thr eadLocal Tar get Sour ce iS pretty much the same as was explained for the other types of
target source:

<bean i d="t hr eadl ocal Tar get Source" cl ass="org. spri ngfranework. aop. target. ThreadLocal Tar get Sour ce" >
<property name="t ar get BeanNanme" val ue="busi nessbj ect Target"/>
</ bean>

Note

Threadl ocals come with serious issues (potentially resulting in memory leaks) when incorrectly
using them in a multi-threaded and multi-classloader environments. One should always consider
wrapping athreadlocal in some other class and never directly use the Thr eadLocal itself (except of

Spring Framework (2.0.6) 163

Spring AOP APIs

course in the wrapper class). Also, one should aways remember to correctly set and unset (where
the latter simply involved a call to ThreadLocal . set (nul 1)) the resource local to the thread.
Unsetting should be done in any case since not unsetting it might result in problematic behavior.
Spring's ThreadL ocal support does this for you and should always be considered in favor of using
ThreadL ocals without other proper handling code.

7.11. Defining new Advi ce types

Spring AOP is designed to be extensible. While the interception implementation strategy is presently used
internally, it is possible to support arbitrary advice types in addition to the out-of-the-box interception around
advice, before, throws advice and after returning advice.

The or g. springframewor k. aop. f ramewor k. adapt er package is an SPI package alowing support for new
custom advice types to be added without changing the core framework. The only constraint on a custom Advi ce
typeisthat it must implement the or g. aopal | i ance. aop. Advi ce tag interface.

Please refer to the or g. spri ngf ramewor k. aop. f r amewor k. adapt er package's Javadocs for further information.

7.12. Further resources

Please refer to the Spring sample applications for further examples of Spring AOP:
» The JPetStore's default configuration illustrates the use of the Tr ansact i onPr oxyFact or yBean for declarative
transaction management.

 The /attributes directory of the JPetStore illustrates the use of attribute-driven declarative transaction
management.

Spring Framework (2.0.6) 164

Chapter 8. Testing

8.1. Introduction

The Spring team considers developer testing to be an absolutely integral part of enterprise software
development. A thorough treatment of testing in the enterprise is beyond the scope of this chapter; rather, the
focus here is on the value add that the adoption of the IoC principle can bring to unit testing; and on the benefits
that the Spring Framework provides in integration testing.

8.2. Unit testing

One of the main benefits of Dependency Injection is that your code should really depend far less on the
container than in traditional J2EE development. The POJOs that comprise your application should be testable in
JUnit tests, with objects simply instantiated using the new operator, without Spring or any other container. Y ou
can use mock objects (in conjunction with many other valuable testing techniques) to test your code in
isolation. If you follow the architecture recommendations around Spring you will find that the resulting clean
layering and componentization of your codebase will naturally faciliate easier unit testing. For example, you
will be able to test service layer objects by stubbing or mocking DAO interfaces, without any need to access
persistent data while running unit tests.

True unit tests typicaly will run extremely quickly, as there is no runtime infrastructure to set up, whether
application server, database, ORM tool, or whatever. Thus emphasizing true unit tests as part of your
development methodology will boost your productivity. The upshot of thisis that you do not need this section
of the testing chapter to help you write effective unit tests for your 10C-based applications.

8.3. Integration testing

However, it is also important to be able to perform some integration testing without requiring deployment to
your application server or connecting to other enterprise infrastructure. This will enable you to test things such
as:

« The correct wiring of your Spring |oC container contexts.

e Data access using JDBC or an ORM tool. This would include such things such as the correctness of SQL
statements / or Hibernate XML mapping files.

The Spring Framework provides first class support for integration testing in the form of the classes that are
packaged in the spri ng- mock. j ar library. Please note that these test classes are JUnit-specific.

Theor g. spri ngf ramewor k. t est package provides valuable JUnit Test Case superclasses for integration testing
using a Spring container, while at the same time not being reliant on an application server or other deployed
environment. They will be slower to run than unit tests, but much faster to run than the equivalent Cactus tests
or remote tests relying on deployment to an application server.

These superclasses provide the following functionality:

» Spring loC container caching between test case execution.

Spring Framework (2.0.6) 165

Testing

¢ The pretty-much-transparent Dependency Injection of test fixture instances (thisis nice).
 Transaction management appropriate to integration testing (thisis even nicer).

» A number of Spring-specific inherited instance variables that are really useful when integration testing.

8.3.1. Context management and caching

The org. springfranework. test package provides support for consistent loading of Spring contexts, and
caching of loaded contexts. Support for the caching of loaded contexts isimportant, because if you are working
on alarge project, startup time may become an issue - not because of the overhead of Spring itself, but because
the aobjects instantiated by the Spring container will themselves take time to instantiate. For example, a project
with 50-100 Hibernate mapping files might take 10-20 seconds to load the mapping files, and incurring that
cost before running every single test case in every single test fixture will lead to ower overall test runs that
could reduce productivity.

To address this issue, the Abst r act Dependencyl nj ecti onSpri ngCont ext Test s has an pr ot ect ed method that
subclasses must implement to provide the location of context definition files:

protected String[] getConfiglLocations();

Implementations of this method must provide an array containing the resource locations of XML configuration
metadata - typically on the classpath - used to configure the application. This will be the same, or nearly the
same, asthe list of configuration locations specified in web. xn or other deployment configuration.

By default, once loaded, the configuration fileset will be reused for each test case. Thus the setup cost will be
incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely case that
atest may 'dirty' the config location, requiring reloading - for example, by changing a bean definition or the
state of an application object - you can cal the setDirty() method on
Abst r act Dependencyl nj ecti onSpri ngCont ext Test s t0 cause the test fixture to reload the configurations and
rebuild the application context before executing the next test case.

8.3.2. Dependency Injection of test fixtures

When Abst r act Dependencyl nj ecti onSpri ngCont ext Tests (and subclasses) load your application context,
they can optionally configure instances of your test classes by Setter Injection. All you need to do is to define
instance variables and the corresponding setters. Abstract Dependencyl nj ect i onSpri ngCont ext Tests Will
automatically locate the corresponding object in the set of configuration files specified in the
get Confi gLocati ons() method.

Consider the scenario where we have a class, Hi ber nat eTi t | eDao, that performs data access logic for say, the
Ti t | e domain object. We want to write integration tests that test all of the following areas:

e The Spring configuration; basically, is everything related to the configuration of the Hi ber nat eTi t | eDao
bean correct and present?

« The Hibernate mapping file configuration; is everything mapped correctly and are the correct lazy-loading
settings in place?

e Thelogic of the Hi ber nat eTi t | eDao; does the configured instance of this class perform as anticipated?

Let'slook at the test class itself (we will look at the configuration immediately afterwards).

Spring Framework (2.0.6) 166

Testing

public final class H bernateTitleDaoTests extends Abstract Dependencyl njecti onSpri ngCont ext Tests {

/'l this instance will be (automatically) dependency injected
private Hi bernateTitl eDao titleDao;

// a setter method to enable DI of the 'titleDao' instance variable
public void setTitleDao(H bernateTitleDao titleDao) {
this.titleDao = titleDao;

}

public void testLoadTitle() throws Exception {
Title title = this.titleDao.|oadTitle(new Long(10));
assertNotNul | (title);

}

/'l specifies the Spring configuration to load for this test fixture
protected String[] getConfiglLocations() {

return new String[] { "classpath:conffoo/daos.xm" };
}

Thefile referenced by the get Confi gLocat i ons() method (' cl asspat h: cont f oo/ daos. xni *) looks like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE beans PUBLIC "-//SPRI NG /DTD BEAN 2. 0//EN'

"http://ww. springframework. org/dtd/ http://ww.springframework. org/dtd/spring-beans-2.0.dtd">
<beans>

<l-- this bean will be injected into the HbernateTitleDaoTests cl ass -->

<bean id="titl eDao" class="com foo.dao. hi bernate. H bernateTitl eDao">
<property nanme="sessi onFactory" ref="sessionFactory"/>

</ bean>

<bean i d="sessi onFactory" cl ass="org. spri ngfranmework. orm hi ber nat e3. Local Sessi onFact or yBean" >
<I-- dependencies elided for clarity -->
</ bean>

</ beans>

The Abst ract Dependencyl nj ecti onSpri ngCont ext Tests Classes uses autowire by type. Thus if you have
multiple bean definitions of the same type, you cannot rely on this approach for those particular beans. In that
case, you can use the inherited appl i cat i onCont ext instance variable, and explicit lookup using (for example)
an explicit call to appl i cati onCont ext. get Bean("titl eDao").

If you don't want dependency injection applied to your test cases, simply dont declare any setters.
Alternatively, you can extend the Abstract SpringCont ext Tests - the root of the class hierarchy in the
org. springframework. test package. It merely contains convenience methods to load Spring contexts, and
performs no Dependency Injection of the test fixture.

8.3.2.1. Field level injection

If, for whatever reason, you don't fancy having setter methods in your test fixtures, Spring can (in this one case)
inject dependencies into prot ect ed fields. Find below a reworking of the previous example to use field level
injection (the Spring XML configuration does not need to change, merely the test fixture).

public final class HibernateTitl eDaoTests extends Abstract Dependencyl njecti onSpri ngCont ext Tests {

public H bernateTitl eDaoTests() {
// switch on field level injection
set Popul at eProt ect edVari abl es(true);

}

// this instance will be (automatically) dependency injected
protected Hi bernateTitleDao titl eDao;

public void testLoadTitle() throws Exception {

Spring Framework (2.0.6) 167

Testing

Title title = this.titleDao.loadTitle(new Long(10));
assertNot Nul | (title);
}

/| specifies the Spring configuration to load for this test fixture
protected String[] getConfiglLocations() {

return new String[] { "classpath:conifoo/daos.xm" };
}

In the case of field injection, there is no autowiring going on: the name of your pr ot ect ed instances variable(s)
are used as the lookup bean name in the configured Spring container.

8.3.3. Transaction management

One common issue in tests that access a real database is their affect on the state of the persistence store. Even
when you're using a development database, changes to the state may affect future tests. Also, many operations -
such asinserting to or modifying persistent data - cannot be done (or verified) outside a transaction.

The org. springfranmework. t est. Abst ract Transact i onal Dat aSour ceSpri ngCont ext Tests superclass (and
subclasses) exist to meet this need. By default, they create and roll back a transaction for each test. You simply
write code that can assume the existence of a transaction. If you call transactionally proxied objects in your
tests, they will behave correctly, according to their transactional semantics.

Abstract Transact i onal Spri ngCont ext Test s depends on aPl at f or mr ansact i onManager bean being defined
in the application context. The hame doesn't matter, due to the use of autowire by type.

Typicaly you will extend the subclass, Abstract Transact i onal Dat aSour ceSpri ngCont ext Tests. This also
requires that a Dat aSour ce bean definition - again, with any name - be present in the configurations. It creates a
JdbcTenpl at e instance variable that is useful for convenient querying, and provides handy methods to delete
the contents of selected tables (remember that the transaction will roll back by default, so thisis safe to do).

If you want a transaction to commit - unusual, but occasionally useful when you want a particular test to
populate the database - you can «cal the setConplete() —method inherited from
Abstract Transact i onal Spri ngCont ext Test s. Thiswill cause the transaction to commit instead of roll back.

There is also convenient ability to end a transaction before the test case ends, through calling the
endTransacti on() method. Thiswill roll back the transaction by default, and commit it only if set Conpl et e()
had previously been called. This functionality is useful if you want to test the behavior of 'disconnected' data
objects, such as Hibernate-mapped objects that will be used in a web or remoting tier outside a transaction.
Often, lazy loading errors are discovered only through Ul testing; if you call endTransacti on() you can ensure
correct operation of the Ul through your JUnit test suite.

8.3.4. Convenience variables

When you extend the Abst r act Tr ansact i onal Dat aSour ceSpr i ngCont ext Test s class you will have access to
the following pr ot ect ed instance variables:

* applicationCont ext (a Confi gur abl eAppl i cati onCont ext): inherited from the
Abst r act Dependencyl nj ecti onSpri ngCont ext Test s superclass. Use this to perfom explicit bean lookup, or
test the state of the context as awhole.

e jdbcTenpl ate: inherited from Abstract Transacti onal Dat aSour ceSpri ngCont ext Tests. Useful for
querying to confirm state. For example, you might query before and after testing application code that creates

Spring Framework (2.0.6) 168

Testing

an object and persists it using an ORM tool, to verify that the data appears in the database. (Spring will
ensure that the query runs in the scope of the same transaction.) You will need to tell your ORM tool to
'flush' its changes for this to work correctly, for example using the f1 ush() method on Hibernate's Sessi on
interface.

Often you will provide an application-wide superclass for integration tests that provides further useful instance
variables used in many tests.

8.3.5. Javab5+ specific support

If you are developing against Javab or greater, there are some additional annotations and support classes that
you can use in your testing. The Abstract AnnotationAwareTransacti onal Tests class extends the
Abst ract Transact i onal Dat aSour ceSpri ngCont ext Test s makes the text fixtures that you write that inherit
from it aware of a number of (Spring-specific) annotations.

8.3.5.1. Annotations

The Spring Framework provides a number of annotations to help when writing integration tests. Please note
that these annotations must be used in conjunction with the aforementioned
Abst ract Annot at i onAwar eTr ansact i onal Tests in order for the presence of these annotations to have any
effect.

* @irtiesContext.

The presence of this annotation on a text method indicates that the underlying Spring container is 'dirtied'
during the execution of of the test method, and thus must be rebuilt after the test method finishes execution
(regardless of whether the test passed or not). Has the same effect asaregular set Di rty() invocation.

@i rti esCont ext
public void testProcess() {
/1 sone logic that results in the Spring container being dirtied

}

* @xpect edExcepti on.

Indicates that the annotated test method is expected to throw an exception during execution. The type of the
expected exception is provided in the annotation, and if an an instance of the exception is thrown during the
test method execution then the test passes. Likewise if an instance of the exception is not thrown during the
test method execution then the test fails.

@xpect edExcept i on(SoneBusi nessExcept i on. cl ass)
public void testProcessRai nyDayScenario() {

/1 some logic that results in an Exception bei ng thrown
}

® @\ot Transacti onal .

Simply indicates that the annotated test method must not execute in atransactional context.

@\ot Tr ansact i onal

public void testProcess() {
...

}

Spring Framework (2.0.6) 169

Testing

* @Repeat

Indicates that the annotated test method must be executed repeatedly. The number of times that the test
method isto be executed is specified in the annotation.

@Repeat (10)

public void testProcessRepeatedl y() {
...

}

8.3.6. PetClinic example

The PetClinic sample application included with the Spring distribution illustrates the use of these test
superclasses. Most test functionality is included in the Abstract O ini cTests, for which a partial listing is
shown below:

public abstract class AbstractC inicTests
ext ends Abstract Transacti onal Dat aSour ceSpri ngCont ext Tests {

protected Clinic clinic;

public void setCinic(Cinic clinic) {
this.clinic = clinic;

}

public void testGetVets() {
Col l ection vets = this.clinic.getVets();
assert Equal s(' JDBC query must show t he same nunmber of vets',
j dbcTenpl at e. quer yFor | nt (* SELECT COUNT(0) FROM VETS'),
vets.size());
Vet vl = (Vet) EntityUtils.getByld(vets, Vet.class, 2);
assert Equal s(' Leary', vl.getLastName());
assert Equal s(1, v1.getNrO Specialties());
assert Equal s(' radi ol ogy', ((Specialty) vl.getSpecialties().get(0)).getName());
Vet v2 = (Vet) EntityUtils.getByld(vets, Vet.class, 3);
assert Equal s(' Dougl as', v2.getLastNane());
assert Equal s(2, v2.getNrO Specialties());
assert Equal s(' dentistry', ((Specialty) v2.getSpecialties().get(0)).getName());
assert Equal s(' surgery', ((Specialty) v2.getSpecialties().get(1)).getNanme());

Notes:

* This test case extends the Abstract Transacti onal Dat aSour ceSpri ngCont ext Tests class, from which it
inherits Dependency Injection and transactional behavior.

« Theclini ¢ instance variable - the application object being tested - is set by Dependency Injection through
thesetdinic(..) method.

e Thetest Get Vet s() method illustrates how the inherited JdbcTenpl at e variable can be used to verify correct
behavior of the application code being tested. This allows for stronger tests, and lessens dependency on the
exact test data. For example, you can add additional rowsin the database without breaking tests.

e Like many integration tests using a database, most of the tests in AbstractdinicTests depend on a
minimum amount of data already in the database before the test cases run. Y ou might, however, choose to
populate the database in your test cases also - again, within the one transaction.

The PetClinic application supports four data access technologies - JDBC, Hibernate, TopLink, and JPA. Thus
the Abstract d i ni cTest s class does not itself specify the context locations - this is deferred to subclasses, that
implement the necessary protected abstract method from Abst r act Dependencyl nj ect i onSpri ngCont ext Test s.

Spring Framework (2.0.6) 170

Testing

For example, the Hibernate implementation of the PetClinic tests contains the following implementation:

public final class Hi bernateCinicTests extends AbstractCinicTests {

protected String[] getConfiglLocations() {
return new String[] {
"/ org/ springfranmewor k/ sanpl es/ pet cl i ni ¢/ hi ber nat e/ appl i cati onCont ext - hi bernate. xm "
b
}
}

As the PetClinic is a very simple application, there is only one Spring configuration file. Of course, more
complex applications will typically break their Spring configuration across multiple files. Instead of being
defined in a leaf class, config locations will often be specified in a common base class for all
application-specific integration tests. This may also add useful instance variables - populated by Dependency
Injection, naturally - such asaHi ber nat eTenpl at e, in the case of an application using Hibernate.

As far as possible, you should have exactly the same Spring configuration files in your integration tests asin
the deployed environment. One likely point of difference concerns database connection pooling and transaction
infrastructure. If you are deploying to a full-blown application server, you will probably use its connection pool
(available through JNDI) and JTA implementation. Thus in production you will use aJndi oj ect Fact or yBean
for the Dat aSource, and Jt aTransacti onManager. JNDI and JTA will not be available in out-of-container
integration tests, so you should use a combination like the Commons DBCP Basi cDat aSource and
Dat aSour ceTr ansact i onManager Of Hi ber nat eTr ansact i onManager for them. You can factor out this variant
behavior into a single XML file, having the choice between application server and 'local’ configuration
separated from all other configuration, which will not vary between the test and production environments.

8.4. Further Resources

This section contains links to further resources about testing in general.

The JUnit homepage. The Spring Framework's unit test suite is written using JUnit as the testing framework.

The EasyM ock homepage. The Spring Framework uses EasyMock extensively in it's test suite.

The IMock homepage.

The DbUnit homepage.

The Grinder homepage (load testing framework).

Spring Framework (2.0.6) 171

http://www.junit.org/index.htm
http://www.easymock.org/
http://www.jmock.org/
http://dbunit.sourceforge.net/
http://grinder.sourceforge.net/

Part Il. Middle Tier Data Access

This part of the reference documentation is concerned with the middle tier, and specifically the data access
responsibilities of said tier.

Spring's comprehensive transaction management support is covered in some detail, followed by thorough
coverage of the various middle tier data access frameworks and technologies that the Spring Framework
integrates with.

Chapter 9, Transaction management

Chapter 10, DAO support

Chapter 11, Data access using JDBC

Chapter 12, Object Relational Mapping (ORM) data access

Spring Framework (2.0.6) 172

Chapter 9. Transaction management

9.1. Introduction

One of the most compelling reasons to use the Spring Framework is the comprehensive transaction support.
The Spring Framework provides a consistent abstraction for transaction management that delivers the following
benefits:

« Provides a consistent programming model across different transaction APIs such as JTA, JDBC, Hibernate,
JPA, and JDO.

* Supports declarative transaction management.

e Provides a simpler API for programmatic transaction management than a number of complex transaction
APlIssuch as JTA.

 Integrates very well with Spring's various data access abstractions.

This chapter is divided up into a number of sections, each detailing one of the value-adds or technol ogies of the
Spring Framework's transaction support. The chapter closes up with some discussion of best practices
surrounding transaction management (for example, choosing between declarative and programmatic transaction
management).

e The first section, entitled Motivations, describes why one would want to use the Spring Framework's
transaction abstraction as opposed to EJB CMT or driving transactions via a proprietary APl such as
Hibernate.

» The second section, entitled Key abstractions outlines the core classes in the Spring Framework's transaction
support, aswell as how to configure and obtain Dat aSour ce instances from a variety of sources.

¢ The third section, entitled Declarative transaction management, covers the Spring Framework's support for
declarative transaction management.

« The fourth section, entitled Programmatic transaction management, covers the Spring Framework's support
for programmatic (that is, explicitly coded) transaction management.

9.2. Motivations

Is an application server needed for transaction management?

The Spring Framework's transaction management support significantly changes traditional thinking as to
when a J2EE application requires an application server.

In particular, you don't need an application server just to have declarative transactions via EJB. In fact,
even if you have an application server with powerful JTA capabilities, you may well decide that the
Spring Framework's declarative transactions offer more power and a much more productive programming
model than EJB CMT.

Typically you need an application server's JTA capability only if you need to enlist multiple transactional

Spring Framework (2.0.6) 173

Transaction management

resources, and for many applications being able to handle transactions across multiple resources isn't a
requirement. For example, many high-end applications use a single, highly scalable database (such as
Oracle 9i RAC). Standaone transaction managers such as Atomikos Transactions and JOTM are other
options. (Of course you may need other application server capabilities such as IMS and JCA.)

The most important point is that with the Spring Framework you can choose when to scale your
application up to a full-blown application server. Gone are the days when the only alternative to using
EJB CMT or JTA was to write code using local transactions such as those on JDBC connections, and face
a hefty rework if you ever needed that code to run within global, container-managed transactions. With
the Spring Framewaork, only configuration needs to change so that your code doesn't have to.

Traditionally, J2EE devel opers have had two choices for transaction management: global or local transactions.
Global transactions are managed by the application server, using the Java Transaction APl (JTA). Local
transactions are resource-specific: the most common example would be a transaction associated with a JDBC
connection. This choice has profound implications. For instance, global transactions provide the ability to work
with multiple transactional resources (typically relational databases and message queues). With local
transactions, the application server is not involved in transaction management and cannot help ensure
correctness across multiple resources. (It is worth noting that most applications use a single transaction
resource.)

Global Transactions. Global transactions have a significant downside, in that code needsto use JTA, and JTA
is a cumbersome API to use (partly due to its exception model). Furthermore, a JTA User Transacti on
normally needs to be sourced from JNDI: meaning that we need to use both JNDI and JTA to use JTA.
Obviously all use of global transactions limits the reusability of application code, as JTA is normally only
available in an application server environment. Previoudly, the preferred way to use global transactions was via
EJB CMT (Container Managed Transaction): CMT is a form of declarative transaction management (as
distinguished from programmatic transaction management). EJB CMT removes the need for
transaction-related JNDI lookups - athough of course the use of EJB itself necessitates the use of JNDI. It
removes most of the need (although not entirely) to write Java code to contral transactions. The significant
downside is that CMT istied to JTA and an application server environment. Also, it is only available if one
chooses to implement business logic in EJBs, or at least behind a transactional EJB facade. The negatives
around EJB in general are so great that thisis not an attractive proposition, especialy in the face of compelling
aternatives for declarative transaction management.

Local Transactions. Local transactions may be easier to use, but have significant disadvantages. they cannot
work across multiple transactional resources. For example, code that manages transactions using a JDBC
connection cannot run within a global JTA transaction. Another downside is that local transactions tend to be
invasive to the programming model.

Spring resolves these problems. It enables application devel opers to use a consistent programming model in any
environment. Y ou write your code once, and it can benefit from different transaction management strategies in
different environments. The Spring Framework provides both declarative and programmatic transaction
management. Declarative transaction management is preferred by most users, and is recommended in most
Cases.

With programmatic transaction management, developers work with the Spring Framework transaction
abstraction, which can run over any underlying transaction infrastructure. With the preferred declarative model,
developers typically write little or no code related to transaction management, and hence don't depend on the
Spring Framework's transaction API (or indeed on any other transaction AP!).

Spring Framework (2.0.6) 174

http://www.atomikos.com/
http://jotm.objectweb.org/

Transaction management

9.3. Key abstractions

The key to the Spring transaction abstraction is the notion of a transaction strategy. A transaction strategy is
defined by the or g. spri ngf ramewor k. t ransact i on. Pl at f or nilr ansact i onManager interface, shown below:

public interface Platfornilransacti onManager {

Transacti onSt at us get Transacti on(Transacti onDefiniti on definition)
throws Transacti onExcepti on;

void comm t(TransactionStatus status) throws Transacti onExcepti on;

voi d rol | back(TransactionStatus status) throws Transacti onExcepti on;

This is primarily an SPI interface, although it can be used programmatically. Note that in keeping with the
Spring Framework's philosophy, PI at f or nilr ansact i onManager is an interface, and can thus be easily mocked
or stubbed as necessary. Nor is it tied to a lookup strategy such as JNDI: Pl at f or nilr ansact i onManager
implementations are defined like any other object (or bean) in the Spring Framework's [oC container. This
benefit alone makes it a worthwhile abstraction even when working with JTA: transactional code can be tested
much more easily than if it used JTA directly.

Again in keeping with Spring's philosophy, the Transacti onException that can be thrown by any of the
Pl at f or niTr ansact i onManager interface's methods is unchecked (i.ee it extends the
java. | ang. Runti meException class). Transaction infrastructure failures are almost invariably fatal. In rare
cases where application code can actually recover from atransaction failure, the application developer can till
choose to catch and handle Tr ansact i onExcept i on. The salient point is that developers are not forced to do so.

The getTransaction(..) method returns a TransactionStatus oObject, depending on a
TransactionDefinition parameter. The returned TransactionStatus might represent a new or existing
transaction (if there were a matching transaction in the current call stack - with the implication being that (as
with J2EE transaction contexts) a Tr ansact i onSt at us iS associated with athread of execution).

The Transacti onDef i ni ti on interface specifies:

« |solation: the degree of isolation this transaction has from the work of other transactions. For example, can
this transaction see uncommitted writes from other transactions?

» Propagation: normally all code executed within a transaction scope will run in that transaction. However,
there are several options specifying behavior if atransactional method is executed when a transaction context
aready exists. for example, simply continue running in the existing transaction (the common case); or
suspending the existing transaction and creating a new transaction. Soring offers all of the transaction
propagation options familiar from EJB CMT.

e Timeout: how long this transaction may run before timing out (and automatically being rolled back by the
underlying transaction infrastructure).

« Read-only status: aread-only transaction does not modify any data. Read-only transactions can be a useful
optimization in some cases (such as when using Hibernate).

These settings reflect standard transactional concepts. If necessary, please refer to a resource discussing
transaction isolation levels and other core transaction concepts because understanding such core concepts is
essential to using the Spring Framework or indeed any other transaction management solution.

The Transact i onSt at us interface provides a simple way for transactional code to control transaction execution

Spring Framework (2.0.6) 175

Transaction management

and query transaction status. The concepts should be familiar, asthey are common to all transaction APIs:

public interface TransactionStatus {
bool ean i sNewTransaction();
voi d set Rol | backOnl y();

bool ean i sRol | backOnl y();

Regardless of whether you opt for declarative or programmatic transaction management in Spring, defining the
correct Pl at f or milr ansact i onManager implementation is absolutely essential. In good Spring fashion, this
important definition typically is made using via Dependency Injection.

Pl at f or nilr ansact i onManager implementations normally require knowledge of the environment in which they
work: JDBC, JTA, Hibernate, etc The following examples from the dat aAccessCont ext -1 ocal . xmi file from
Spring's j PetStor e sample application show how alocal Pi at f or nir ansact i onManager implementation can be
defined. (Thiswill work with plain JDBC.)

We must define a JDBC Dat aSour ce, and then use the Spring Dat aSour ceTr ansact i onManager, giving it a
reference to the Dat aSour ce.

<bean i d="dat aSource" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy- met hod="cl ose" >
<property name="driverC assNane" val ue="${j dbc. driverC assName}" />
<property name="url" val ue="${jdbc.url}" />
<property nanme="usernane" val ue="${j dbc. usernane}" />
<property nane="password" val ue="${j dbc. password}" />
</ bean>

Therelated Pl at f or mTr