o
Spring Web Services

1.04

Copyright © 2005-2007 Arjen Poutsma, Rick Evans

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

N g1 oo [Tex o IR PPRSRRR 1
1. What iS SPring WED SEIVICES?cooiiiiiiieiiee ettt 2
00 g oo [T 4 o o TP UEPPRR 2

1.2. RUNEIME ENVIFONIMENTuiiii e sa s b e aaaasasanasasasnnnnnsnsnsnnnsnnns 2

2. Why CONtraCt First?ooooeieiei e 4
2.1 INrodUCTION ..o, 4

2.2. Object/ XML Impedance MiSMEaLChcooiiiiiiiiie e 4
2.2.1. XSD EXIENSIONSuviiiiiieee e e ittt e e e e e e et e e e e e e s et e e e e e e e s s snnaraereaaeeseaannneees 4

2.2.2. UNPOIBDIE TYPES ..ottt 4

2.2.3. CYCliCGraphs ... 5

2.3. Contract-first versus Contract-lastcccceeeiiiii 6
23 L Fragility oo 6

2.3.2. PEIfOMANCE ... 6

2.3.3. REUSADITILY ..veeieiiiiiiee et e e et e e e st e e e e e e e e e nnnaeeas 7

2.3 4. VEISIONING .ooeeieiiiiiiieiee et e e e e e et e e e e e e st et e e e e e e e s s s b reraaeeeseannrrees 7

3. Writing ContraCt-First WED SENVICESoeiiiiiiiiiee et 8
G 50 O 1 04 (T (1 1 o PR 8

Be2. IMIBSSAOESettteeeee e e e ettt e e e e e e e e e e e et e e e e e e bbb r et e e e e e e e annrnres 8

G T2 I o] o = Y 8

S22 EMPIOYEE ...ttt 8

3.2.3. HOlAAYREQUESEoeeieiiieiie et 9

3.3 DAA CONIIACE ...ieeiiiiii et e e e e e e e e e e e e aanre 9

IS Yo=Y oo 01 o 11

3.5. Creating the PrOJECEvviiiiiiiee e e e e e e e e aneeees 13

3.6. Implementing the ENAPOINTuvrieiiiiiieee e 13
3.6.1. Handling the XML MESSA0Eceevvviiiiiiiiieeeeeeeeeeeeeee et eee e e ee e e e e e e e e eeeeee e 14

3.6.2. Routing the Message to the Endpointc.eeveveeeiiiiiciiiieeee e 15

3.7. PUDIIShING tNE WSDL ...ttt e e e e et a e e e nnraaeeeans 16

T = 1= = o PRSPPI 17
4. SNAred COMPONENTSeveiieiiiieee ettt e ettt e et e e e ek e e e e e e e e e s b et e e e aabe e e e e asbr e e e e anneeeeaannneeeeans 18
4.1, WED SENVICE MESSAOES ...vvvviiiiieeeiiiiiiiieee e e e e e e e estrr e e e e e e e e s s et b be e e e e e e e e s s starrreeeeaeessennnreens 18

4. 0.1 VEDSEI Vi CEMESSATE wuuueirrruneieruuierertueeseateesettaeeseatnaesetneesetnaeesernaeerernns 18

4. 1.2, SOAPMESSAGE wevvrurererruneeeerunieeeetieeeeatuaeeeanaaaeettaaeettaaerettaasettaaesetaaaaeeranns 18

4.1.3. MESSA0E FACLOMESuviieiiiiie ettt e e e s e e e e e e e e 18

Y YT Yo T=Y 0o o =Y AP 20

R W VY o Jo] A0 1T =0 < A 20

4.3. Handling XML With XPathcccuiiiiiiiiiee e 21

L T I = = 41 = TR = YR 112 R 21

A (= O =Y 10T L =P 22

5. Creating aWeb servicewith Spring-WS ... 23
o300 R 1 1o o L1 e 1 o o PRSP 23

5.2. TRE MESSAGEDi SPAL CHET iiiiiiiii e e e 23
5.2.1. MessageDi SPat Cher SEI VI @1 cuuiivueeeeieiiiieiieeeeeee et ee e et e et e e e e e er e eaaeeeaaans 24

5.2.2. Wiring up Spring-WSin abi spat cher SErvl €tcoccveeeeiiieeeeeiiireee e 26

5.3 ENAPOINES ..o 26
5.3.1. Abst r act DonPayl oadEndpoi nt and other DOM endpointsccccceeveeeeennns 27

5.3.2. Abst ract Mar shal | i ngPayl 0adENAPOi Nt eeeevuneiiiiiieeceieee e e e e e e e e eenans 28

TG e = Vo T TN o1 30

5.4. ENCPOINT MEBPPINGS ... eeeeiaitieee ettt et e et e ettt e s e e e e s e e e st e e e s asne e e e e annreeeeennes 32
5.4.1. Payl oadRoot QNameENdPOi Nt MBPPI NT .uverneiereiriieieteeereeerieeeieeereeereeerneesnnns 32

5.4.2. SoapAct i ONENAPOi Nt VAPPI NG wevvrruiieeerrieeeiiiiaseeeeeseeessiiaaeeeeeseeessrnnnaeeeesesennnns 32

Spring-WS (1.0.4)

Spring Web Services - Reference Documentation

5.4.3. Met NOdENAPOi Nt MBPPI NT ceeeveeeeiiiiieieeeeeeeestiiaseeeesseeeasrnnaeeeeeseessssnnaeeeeeesennnns 33
5.4.4. Intercepting requests - the Endpoi nt I nt ercept or interfacecccovveeeeeeens 33

5.5. HaNAIiNG EXCEPLIONSvveiieiiiiiie ettt e e 35
5.5.1. SoapFaul t Mappi NGEXCEPt i ONRESO! VEI cvuviierniiiiiieieeieee e e e e e e e e e seaeeanaes 36
5.5.2. SoapFaul t Annot at i ONEXCePt i ONRESOI VEI ..vuiiiiieeiiiiiiiiieieeeeeeeeevetee e e e e e e e eeeens 36

6. Using Spring Web Servicesonthe CHENtoeeiiiiiiiiiie e 38
G20 I 1T [F o1 o o [P PP PP 38
6.2. USING the ClIent-SIdE AP ... e 38
0.2. 1. VIEDSEr Vi CETEMPI G @ 1evuiiiriiiiiiiieii e ee e et e e e et e e e e e e e s ab e e et e e eb e raaeeaaans 38
6.2.2. Sending and receiVing aVhSer Vi CEMESSAGE wuvrrrreerriiiirrrrirrereeessinnrrraeereaeeesnns 38
6.2.3. Sending and receiving POJOs - marshalling and unmarshalling 39
6.2.4. WebSer vi ceMessageCal | DACK ...vuuiiiiiieiiiiiiiiiie i e e e e eceeeece e e e e s e e eeeeeneens 40
6.2.5. VebSer vi CEMESSAGEEXT I ACT OF iivuuieeiiiiieeieiiieeeeeiteeeeeetieeeeenaeeeeenaeesesnanaeeeennns 40

7. Securing your Web services With SPring-WSooiiiiiiiiie e 41
80 R 1 1o L o1 o o PRSP 41
T.2. XWSSECUI T 1 Y1 NEEF CEPL OF cevniiiiiieieieeeeee et e e e e et e e et e e et e e et e e saa e e et e esanseaneertneeranerens 41
7.3 KBYSLOIES ...ttt e e e e e e r et e e e e s e e et e e e e e e e e eeeeas 42
T3LKEYTOOl ..o 42
7.3.2. KeyStoreFaCtoryBean ..., 42
7.3.3. KeyStoreCallbackHandler ... 43

A 114 1= g (o= (oo PRSP 44
7.4.1. Plain Text Username AUthentiCationceevieeeiiiiciiiiiiiee e 44
7.4.2. Digest Username AUthENtICAtIONooiiiiiiiiiiieiee et 46
7.4.3. Certificate AUthENLICALIONccooeeeieiieiee e, 47
7.5.Digital SIgNALUIES ..., 49
751 VErifying SIGNALUIESccoeeeeiiieiiieee ettt e e e et e e e e e e e e 49
7.5.2. SIGNING MESSAGESccuuveiieiiiiiie ettt e st e e s s e e e e 50

7.6. Encryption and DECIYPLIONoviiiiiiie et e e e e eeeeas 50
7.6. 1. DECIYPLION .veieiiitiie ettt ettt e et e e e st e e s e e e e e e e e e ennes 50
7.6.2. ENCIYPLON .oiiiiiiiiciiiie et e e e e e e s s e e e e e e e s e ntbreeeeeaaeeaaans 51

8. Marshalling XML uSING O/X MEPPEIS ...eeeiiiiiiiieiiiiiie ettt e ettt e e snbneeeean 53
S 300 I 1 1 L o1 o o PSP 53
8.2. Marshaller and Unmarshallercceeviiiiiieiiiiiee e 53
B.2. L. MASNAIIENeeeeiiiiie et 53
8.2.2. UNMArshall€roooiiiiiiii i 54
8.2.3. XMIMaPPINGEXCEDTIONeeiiiiiiiieiiiiiie ettt 54

8.3. Using Marshaller and Unmarshallerccoo 55
B JA X B e e e e e e 56
8.4.1. JAXDIMArShaAllEroeeiieiee e 57
8.4.2. JAXD2MArShall€Fccoiiiiiii e 57

8.5, CaSION ... 57
8.5.1. CastOrMarshall@rc.veeiiiiiiiiie e 58
8.5.2. MADPING ..neeteeeeitiie ettt 58

8.6. XIMLBEANSeeeieiiiiiie ettt ettt e e s st e e ettt e e e et e e e e nbe e e e e nae e e e e nnnreeeeenees 58
8.6.1. XmIBeansMarshallercooooiiiiiiiii 58

ST N 1 = PRSPPI 59
B.7. 1L JDXMArShallerooeiiiiiiie e 59

8.8 XSHIBAM .. 59
8.8.1. XStreamMarshall€roooiiiiiiiiiiiiiie e 59

[1], OtNES RESDUICTESuuuvtiuriiitiiiittittruterutetarere e e e ae e ra e aeaeasaes e as s e s sasssasasasssasssasasssnsssnsssnsnsnsnsnnnnnnnnnn 61
[T [T 0T0 =" Y/ 62

Spring-WS (1.0.4)

Preface

In the current age of Service Oriented Architectures, more and more people are using Web Services to connect
previously unconnected systems. Initially, Web services were considered to be just another way to do a Remote
Procedure Call (RPC). Over time however, people found out that there is a big difference between RPCs and
Web services. Especially when interoperability with other platforms is important, it is often better to send
encapsulated XML documents, containing al the data necessary to process the request. Conceptualy,
XML-based Web services are better off being compared to message queues rather than remoting solutions.
Overall, XML should be considered the platform-neutral representation of data, the interlingua of SOA. When
developing or using Web services, the focus should be on this XML, and not on Java.

Spring Web Services focusses on creating these document-driven Web services. Spring Web Services
facilitates contract-first SOAP service development, allowing for the creation of flexible web services using
one of the many ways to manipulate XML payloads. Spring-WS provides a powerful message dispatching
framework, various XML marshalling techniques that can be used outside a Web service environment, a
WS-Security solution that integrates with your existing application security solution, and a Client-side API that
follows the familiar Spring template pattern.

This document provides a reference guide to Spring-WS's features. Since this document is dill a
work-in-progress, if you have any requests or comments, please post them on the support forums at
http://forum.springframework.org/forumdisplay.php?f=39.

Spring-WS (1.0.4) iv

http://forum.springframework.org/forumdisplay.php?f=39

Part |. Introduction

This first part of the reference documentation is an overview of Spring Web Services and the underlying
concepts. Spring-WS is then introduced, and the concepts behind contract-first Web service development are
explained.

Spring-WS (1.0.4) 1

Chapter 1. What is Spring Web Services?

1.1. Introduction

Spring Web Services (Spring-WS) is a product of the Spring community focused on creating document-driven
Web services. Spring Web Services aims to facilitate contract-first SOAP service development, allowing for the
creation of flexible web services using one of the many ways to manipulate XML payloads. The product is
based on Spring itself, which means you can use the Spring concepts such as dependency injection as an
integral part of your Web service.

People use Spring-WS for many reasons, but most are drawn to it after finding alternative SOAP stacks lacking
when it comes to following Web service best practices. Spring-WS makes the best practice an easy practice.
This includes practices such as the WS-| basic profile, Contract-First development, and having aloose coupling
between contract and implementation. The other key features of Spring Web services are:

Powerful mappings. You can distribute incoming XML requests to any object, depending on message
payload, SOAP Action header, or an XPath expression.

XML API support. Incoming XML messages can be handled not only with standard JAXP APIs such as
DOM, SAX, and StAX, but also JDOM, dom4j, XOM, or even marshalling technol ogies.

Flexible XML Marshalling. The Object/XML Mapping module in the Spring Web Services distribution
supports JAXB 1 and 2, Castor, XMLBeans, JiBX, and XStream. And because it is a separate module, you can
use it in non-Web services code as well.

Reuses your Spring expertise. Spring-WS uses Spring application contexts for al configuration, which
should help Spring devel opers get up-to-speed nice and quickly. Also, the architecture of Spring-WS resembles
that of Spring-MVC.

Supports WS-Security. WS-Security allows you to sign SOAP messages, encrypt and decrypt them, or
authenticate against them.

Integrates with Acegi Security. The WS-Security implementation of Spring Web Services provides
integration with Acegi Security. This means you can use your existing Acegi configuration for your SOAP
service aswell.

Built by Maven. This assists you in effectively reusing the Spring Web Services artifacts in your own
Maven-based projects.

Apachelicense. You can confidently use Spring-WSin your project.

1.2. Runtime environment

Spring Web Services runs within a standard Java 1.3 Runtime Environment. It also supports Java 5.0, although
the Java types which are specific to this release are packaged in a separate modules with the suffix "tiger" in
their JAR filename. Note that the security module also requires Java 5.

Spring-WS consists of anumber of modules, which are described in the remainder of this section.

e The XML module (spring-xni . j ar) contains various XML support classes for Spring Web Services. This

Spring-WS (1.0.4) 2

http://acegisecurity.org

What is Spring Web Services?

module is mainly intended for the Spring-WS framework itself, and not a Web service devel opers.

e The Core package (spri ng-ws-core.jar and spring-ws-core-tiger.jar) isthe centra part of the Spring's
Web services functionality. It provides the central webServi ceMessage and SoapMessage interfaces, the
server-side framework, with powerful message dispatching, and the various support classes for implementing
Web service endpoints; and the client-side WebSer vi ceTenpl at e.

e The Security package (spring-ws-security.jar) provides a WS-Security implementation that integrates
with the core Web service package. It allows you to add principal tokens, sign, and decrypt and encrypt
SOAP messages. Addtionally, it allows you to leverage your existing Acegi security implementation for
authentication and authorization.

* The OXM package (spring-oxmjar and spring-oxmtiger.jar) provides integration for popular XML
marshalling APIs, including JAXB 1 and 2. Using the OXM package means that you benefit from a unified
exception hierarchy, and can wire up your favorite XML marshalling technology easily.

The following figure illustrates the Spring-WS modules and the dependencies between them. Arrows indicate
dependencies, i.e. Spring-WS Core depends on Spring-XML and Spring-OXM.

Spring-wWs
Security

Spring-Ws
Core

—

v Spring-Ws
Core
Tiger

S —

Dependencies between Spring-WS modules

Spring-WS (1.0.4) 3

Chapter 2. Why Contract First?

2.1. Introduction

When creating Web services, there are two development styles. Contract Last and Contract First. When using
a contract-last approach, you start with the Java code, and let the Web service contract (WSDL, see sidebar) be
generated from that. When using contract-first, you start with the WSDL contract, and use Java to implement
said contract.

What is WSDL?

WSDL stands for Web Services Description Language. A WSDL fileis an XML document that describes
aWeb service. It specifies the location of the service and the operations (or methods) the service exposes.
For more information about WSDL, refer to the WSDL specification, or read the WSDL tutoria

Spring-WS only supports the contract-first development style, and this section explains why.

2.2. Object/XML Impedance Mismatch

Similar to the field of ORM, where we have an Object/Relational impedance mismatch, there is a similar
problem when converting Java objects to XML. At first glance, the O/X mapping problem appears simple:
create an XML eement for each Java object, converting al Java properties and fields to sub-elements or
attributes. However, things are not as simple as they appear: there is a fundamental difference between
hierarchical languages such as XML (and especially XSD) and the graph model of Javal,

2.2.1. XSD extensions

In Java, the only way to change the behavior of a class is to subclass it, adding the new behavior to that
subclass. In XSD, you can extend a data type by restricting it: that is, constraining the valid values for the
elements and attributes. For instance, consider the following example:

<si npl eType name="Ai r port Code" >
<restriction base="string">
<pattern value="[A-Z][A-Z][A-Z]"] >
</restriction>
</ si npl eType>

This type restricts a XSD string by ways of a regular expression, allowing only three upper case letters. If this
type is converted to Java, we will end up with an ordinary j ava. | ang. Stri ng; the regular expression islost in
the conversion process, because Java does not alow for these sorts of extensions.

2.2.2. Unportable types

One of the most important goals of a Web service is to be interoperable: to support multiple platforms such as
Java, .NET, Python, etc. Because all of these languages have different class libraries, you must use some
common, interlingual format to communicate between them. That format is XML, which is supported by all of

IMost of the contentsin this section wasi nspired by [alpine] and [effective-enterprise-javal.

Spring-WS (1.0.4) 4

http://www.w3.org/TR/wsdl
http://www.w3schools.com/wsdl/
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch

Why Contract First?

these languages.

Because of this conversion, you must make sure that you use portable types in your service implementation.
Consider, for example, aservice that returnsaj ava. util . TreeMap, like so:

public Map getFlights() {
/] use a tree nap, to make sure it's sorted
TreeMap map = new TreeMap();
map. put ("KL1117", " St ockhol ni');

return map;

}

Undoubtedly, the contents of this map can be converted into some sort of XML, but since there is no standard
way to describe a map in XML, it will be proprietary. Also, even if it can be converted to XML, many
platforms do not have a data structure similar to the Treemap. So when a .NET client accesses your Web
service, it will probably end up with aSyst em Col | ect i ons. Hasht abl e, which has different semantics.

This problem is aso present when working on the client side. Consider the following XSD snippet, which
describes a service contract:

<el enent nanme="Cet Fl i ght sRequest ">
<conpl exType>
<al | >
<el ement nane="departureDate" type="date"/>
<el ement name="fronl' type="string"/>
<el ement nanme="to" type="string"/>
</all>
</ conpl exType>
</ el emrent >

This contract defines arequest that takes an date, which isa X SD datatype representing a year, month, and day.
If we call this service from Java, we will probably use either ajava.util.Date OfF java.util. Cal endar.
However, both of these classes actually describe times, rather than dates. So, we will actually end up sending
data that represents the fourth of April 2007 at midnight (2007- 04- 04T00: 00: 00), which is not the same as
2007- 04- 04.

2.2.3. Cyclic graphs

Imagine we have the following simple class structure:

public class Flight {
private String nunber;
private List<Passenger> passengers;

/] getters and setters omtted

}

public class Passenger {
private String nane;
private Flight flight;

/] getters and setters omitted

}

Thisisacyclic graph: the FI i ght refersto the Passenger, which refersto the Fi i ght again. Cyclic graphs like
these are quite common in Java. If we took a naive approach to converting this to XML, we will end up with
something like:

<flight nunmber="KL1117">
<passenger s>

Spring-WS (1.0.4) 5

Why Contract First?

<passenger >
<nane>Arj en Pout sma</ nane>
<flight nunber="KL1117">
<passenger s>
<passenger >
<nane>Arj en Pout sma</ nane>
<flight nunber="KL1117">
<passenger s>
<passenger >
<nanme>Arj en Pout sma</ nane>

which will take a pretty long time to finish, because there is no stop condition for this loop.

One way to solve this problem isto use references to objects that were already marshalled, like so:

<flight nunber="KL1117">
<passenger s>
<passenger >
<nanme>Arj en Pout sma</ nane>
<flight href="KL1117" />
</ passenger >

</ passenger s>
</flight>

This solves the recursiveness problem, but introduces new ones. For one, you cannot use an XML validator to
validate this structure. Another issue is that the standard way to use these references in SOAP (RPC/encoded)
has been deprecated in favor of document/literal (see WS-1 Basic Profile).

These are just a few of the problems when dealing with O/X mapping. It is important to respect these issues
when writing Web services. The best way to respect them is to focus on the XML completely, while using Java
as an implementation language. Thisiswhat contract-first isall about.

2.3. Contract-first versus Contract-last

Besides the Object/XML Mapping issues mentioned in the previous section, there are other reasons for
preferring a contract-first development style.

2.3.1. Fragility

As mentioned earlier, the contract-last development style results in your web service contract (WSDL and your
XSD) being generated from your Java contract (usually an interface). If you are using this approach, you will
have no guarantee that the contract stays constant over time. Each time you change your Java contract and
redeploy it, there might be subsequent changes to the web service contract.

Aditionally, not all SOAP stacks generate the same web service contract from a Java contract. This means
changing your current SOAP stack for a different one (for whatever reason), might aso change your web
service contract.

When aweb service contract changes, users of the contract will have to be instructed to obtain the new contract
and potentially change their code to accommodate for any changesin the contract.

In order for a contract to be useful, it must remain constant for as long as possible. If a contract changes, you
will haveto contact all of the users of your service, and instruct them to get the new version of the contract.

2.3.2. Performance

Spring-WS (1.0.4) 6

http://www.ws-i.org/Profiles/BasicProfile-1.1.html#SOAP_encodingStyle_Attribute

Why Contract First?

When Javais automatically transformed into XML, there is no way to be sure asto what is sent across the wire.
An object might reference another object, which refers to another, etc. In the end, half of the objects on the
heap in your virtual machine might be converted into XML, which will result in slow response times.

When using contract-first, you explicitly describe what XML is sent where, thus making sure that it is exactly
what you want.

2.3.3. Reusability

Defining your schema in a separate file allows you to reuse that file in different scenarios. If you define an
AirportCodein afilecaled airl i ne. xsd, like so:

<si npl eType nanme="Ai r port Code" >
<restriction base="string">
<pattern value="[A-Z][A-Z][A-Z]"/ >
</restriction>
</ si npl eType>

Y ou can reuse this definition in other schemas, or even WSDL files, using ani nport Statement.

2.3.4. Versioning

Even though a contract must remain constant for as long as possible, they do need to be changed sometimes. In
Java, this typically results in a new Java interface, such as Ai rl i neSer vi ce2, and a (new) implementation of
that interface. Of course, the old service must be kept around, because there might be clients who have not
migrated yet.

If using contract-first, we can have a looser coupling between contract and implementation. Such a looser
coupling allows us to implement both versions of the contract in one class. We could, for instance, use an
XSLT stylesheet to convert any "old-style" messages to the "new-style" messages.

Spring-WS (1.0.4) 7

Chapter 3. Writing Contract-First Web Services

3.1. Introduction

Thistutorial shows you how to write contract-first Web services, that is, devel oping web services that start with
the XML Schema/WSDL contract first followed by the Java code second. Spring-WS focuses on this
development style, and this tutorial will help you get started. Note that the first part of this tutorial contains
amost no Spring-WS specific information: it is mostly about XML, XSD, and WSDL. The second part
focusses on implementing this contract using Spring-WsS .

The most important thing when doing contract-first Web service development is to try and think in terms of
XML. This means that Java-language concepts are of lesser importance. It is the XML that is sent across the
wire, and you should focus on that. The fact that Java is used to implement the Web service is an
implementation detail. An important detail, but a detail nonetheless.

In this tutorial, we will define a Web service that is created by a Human Resources department. Clients can
send holiday request forms to this service to book a holiday.

3.2. Messages

In this section, we will focus on the actual XML messages that are sent to and from the Web service. We will
start out by determining what these messages ook like.

3.2.1. Holiday

In the scenario, we have to deal with holiday requests, so it makes sense to determine what a holiday looks like
in XML:

<Hol i day xm ns="http:// myconpany. conf hr/ schemas" >
<St art Dat e>2006- 07- 03</ St ar t Dat e>
<EndDat e>2006- 07- 07</ EndDat e>

</ Hol i day>

A holiday consists of a start date and an end date. We have also decided to use the standard 1SO 8601 date
format for the dates, because that will save a lot of parsing hassle. We have also added a namespace to the
element, to make sure our € ements can used within other XML documents.

3.2.2. Employee

There is also the notion of an employee in the scenario. Here iswhat it looks like in XML.:

<Enpl oyee xm ns="http://nmyconpany. coni hr/ schemas" >
<Nunber >42</ Nunber >
<Fi r st Name>Ar j en</ Fi r st Nanme>
<Last Name>Pout sma</ Last Nanme>

</ Enpl oyee>

We have used the same namespace as before. If this <Enpl oyee/ > element could be used in other scenarios, it
might make sense to use a different namespace, such asht t p: / / myconpany. coni enpl oyees/ schenas.

Spring-WS (1.0.4) 8

http://www.cl.cam.ac.uk/~mgk25/iso-time.html

Writing Contract-First Web Services

3.2.3. HolidayRequest

Both the holiday and employee element can be put in a<Hol i dayRequest / >:

<Hol i dayRequest xm ns="http:// myconpany. conf hr/ schemas" >
<Hol i day>
<St art Dat €>2006- 07- 03</ St ar t Dat e>
<EndDat e>2006- 07- 07</ EndDat e>
</ Hol i day>
<Enpl oyee>
<Numnber >42</ Nunber >
<Fi r st Name>Ar j en</ Fi r st Nanme>
<Last Name>Pout sma</ Last Name>
</ Enpl oyee>
</ Hol i dayRequest >

The order of the two elements does not matter: <enpl oyee/ > could have been the first element just as well.
What is important is that all of the data is there. In fact, the data is the only thing that is important: we are
taking a data-driven approach.

3.3. Data Contract

Now that we have seen some examples of the XML data that we will use, it makes sense to formalize thisinto a
schema. This data contract defines the message format we accept. There are four different ways of defining
such acontract for XML:

* DTDs

XML Schema (XSD)

RELAX NG
* Schematron

DTDs have limited namespace support, so they are not suitable for Web services. Relax NG and Schematron
certainly are easier than XML Schema. Unfortunately, they are not so widely supported across platforms. We
will use XML Schema.

By far the easiest way to create an XSD is to infer it from sample documents. Any good XML editor or Java
IDE offers this functionality. Basically, these tools use some sample XML documents, and generate a schema
from it that validates them all. The end result certainly needs to be polished up, but it's a great starting point.

Using the sample described above, we end up with the following generated schema:

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
el ement For nDef aul t ="qual i fi ed"
t ar get Nanespace="htt p: // myconpany. coni hr/ schemas"
xm ns: hr="http:// nmyconpany. coni hr/ schenmas" >
<xs: el ement name="Hol i dayRequest ">
<xs: conpl exType>
<xs:sequence>
<xs: el ement ref="hr:Holiday"/>
<xs: el ement ref="hr:Enpl oyee"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement name="Hol i day" >
<xs: conpl exType>
<Xs: sequence>
<xs:element ref="hr:StartDate"/>

Spring-WS (1.0.4) 9

http://www.w3.org/XML/Schema
http://www.relaxng.org/
http://www.schematron.com/

Writing Contract-First Web Services

<xs: el ement ref="hr:EndDate"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="StartDate" type="xs: NMTCKEN'/ >
<xs: el ement nanme="EndDat e" type="xs: NMTOKEN'/ >
<xs: el ement name="Enpl oyee" >
<xs: conpl exType>
<Xs: sequence>
<xs:el ement ref="hr:Nunber"/>
<xs: el ement ref="hr:FirstName"/>
<xs: el ement ref="hr:LastNanme"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="Nunber" type="xs:integer"/>
<xs: el ement name="First Nanme" type="xs: NCNane"/ >
<xs:el ement name="Last Nane" type="xs: NCNane"/>
</ xs: schema>

This generated schema obviously can be improved. The first thing to notice is that every type has a root-level
element declaration. This means that the Web service should be able to accept all of these elements as data.
This is not desirable: we only want to accept a <Hol i dayRequest / >. By removing the wrapping element tags
(thus keeping the types), and inlining the results, we can accomplish this.

<xs:schema xm ns: xs="http://ww.w3. org/ 2001/ XM_Schema"
xm ns: hr="http:// myconpany. com hr/schemas"
el enent For nDef aul t =" qual i fi ed"
t ar get Nanespace="htt p:// myconpany. coni hr/ schenas" >
<xs: el ement name="Hol i dayRequest ">
<xs: conpl exType>
<Xs: sequence>
<xs: el enent nanme="Hol i day" type="hr: HolidayType"/>
<xs: el ement name="Enpl oyee" type="hr: Enpl oyeeType"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: conpl exType name="Hol i dayType" >
<Xxs:sequence>
<xs: el ement name="StartDate" type="xs: NMTCKEN'/ >
<xs: el ement name="EndDat e" type="xs: NMTOKEN'/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nanme="Enpl oyeeType" >
<Xs: sequence>
<xs: el ement nanme="Nunber" type="xs:integer"/>
<xs: el ement name="First Name" type="xs: NCNane"/>
<xs: el enent nanme="Last Nane" type="xs: NCNane"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: schema>

The schema still has one problem: with a schemallike this, you can expect the following messages to validate:

<Hol i dayRequest xm ns="http://nyconpany. conl hr/ schenmas" >
<Hol i day>
<StartDate>this is not a date</StartDate>
<EndDat e>nei t her is this</EndDate>
</ Hol i day>
<l-- ... -->
</ Hol i dayRequest >

Clearly, we must make sure that the start and end date are really dates. XML Schema has an excellent built-in
dat e type which we can use. We also change the NCNanes to st ri ngs. Finally, we change the sequence in
<Hol i dayRequest /> t0 al | . This tells the XML parser that the order of <Hol i day/ > and <Enpl oyee/ > iS not
significant. Our final XSD now looks like this:

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"

Spring-WS (1.0.4) 10

Writing Contract-First Web Services

xm ns: hr="http:// myconpany. con hr/ schemas"

el enent For nDef aul t =" qual i fi ed"

t ar get Nanespace="htt p:// myconpany. coni hr/ schemas" >
<xs: el ement nanme="Hol i dayRequest ">

<xs:conpl exType>

<xs:all>
<xs: el ement name="Hol i day" type="hr:HolidayType"/> O
<xs: el ement nanme="Enpl oyee" type="hr: Enpl oyeeType"/>

</xs:all>

</ xs: conpl exType>
</ xs: el enent >
<xs: conpl exType nanme="Hol i dayType" >
<Xs: sequence>
<xs: el ement nanme="StartDate" type="xs:date"/>
<xs: el ement name="EndDat e" type="xs:date"/> O
</ xs: sequence> O
</ xs: conpl exType>
<xs: conpl exType nanme="Enpl oyeeType" >
<Xs: sequence>
<xs:el ement name="Nunber" type="xs:integer"/>
<xs: el ement nanme="First Name" type="xs:string"/>
<xs:el ement name="Last Nane" type="xs:string"/> O
</ xs: sequence> O
</ xs: conpl exType>
</ xs: schena>

O all tellsthe XML parser that the order of <Hol i day/ > and <Enpl oyee/ > isnot significant.

0 We use the xsd: date data type, which consist of a year, month, and day, for <StartDate/> and
<EndDat e/ >.

O xsd:stringisusedforthefirst and last name.

We store thisfileashr. xsd.

3.4. Service contract

A service contract is generally expressed as a WSDL file. Note that in Spring-WS, writing the WSDL by hand
is not required. Based on the XSD and some conventions, Spring-WS can create the WSDL for you, as
explained in the section entitled Section 3.6, “Implementing the Endpoint”. Y ou can skip to the next section if
you want to; the remainder of this section will show you how to write your own WSDL by hand.

We start our WSDL with the standard preamble, and by importing our existing XSD. To separate the schema
from the definition, we will use a separate namespace for the WSDL definitions:
http://myconpany. com hr/definitions.

<wsdl : definitions xm ns:wsdl ="http://schemas. xm soap. or g/ wsdl /"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns: schema="htt p: // nyconpany. com hr/schenmas"
xm ns:tns="http://myconpany. con hr/ definitions"
tar get Nanespace="http:// myconpany. coni hr/ defi nitions">
<wsdl : t ypes>
<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >
<xsd: i nport nanmespace="http:// myconpany. conl hr/ schemas" schemaLocati on="hr.xsd"/>
</ xsd: schenma>
</wsdl : types>

Next, we add our messages based on the written schema types. We only have one message: one with the
<Hol i dayRequest / > we put in the schema:

<wsdl| : mressage nane="Hol i dayRequest " >
<wsdl : part el ement ="schema: Hol i dayRequest"” nanme="Hol i dayRequest "/ >
</ wsdl : ressage>

Spring-WS (1.0.4) 11

http://www.w3.org/TR/wsdl

Writing Contract-First Web Services

We add the message to a port type as an operation:

<wsdl : port Type nanme="HumanResource" >
<wsdl : operation name="Hol i day" >
<wsdl : i nput nmessage="t ns: Hol i dayRequest" nane="Hol i dayRequest "/ >
</ wsdl : operati on>
</ wsdl : port Type>

That finished the abstract part of the WSDL (the interface, as it were), and leaves the concrete part. The
concrete part consists of abi ndi ng, which tells the client how to invoke the operations you've just defined; and
aservi ce, which tellsit where to invokeit.

Adding a concrete part is pretty standard: just refer to the abstract part you defined previously, make sure you
use document/literal for the soap: bi ndi ng elements (r pc/ encoded is deprecated), pick a soapActi on for the
operation (in this case http:// nyconpany. coml Request Hol i day, but any URI will do), and determine the
I ocat i on URL where you want request to comein (inthiscase ht t p: / / nyconpany. conf humanr esour ces):

<wsdl : definitions xm ns:wsdl ="http://schemas. xm soap. org/ wsdl /"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns: schema="htt p: // nyconpany. com hr/ schenas"
xm ns:tns="http://myconpany. coni hr/ definitions"
t ar get Nanespace="http:// myconpany. coni hr/ defi nitions">
<wsdl : types>
<xsd: schema xml ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schema" >
<xsd:inmport namespace="http://nyconpany. coni hr/schemas" O
schemaLocati on="hr.xsd"/ >
</ xsd: schema>
</wsdl : types>

<wsdl : ressage nane="Hol i dayRequest " > O
<wsdl : part el ement ="schema: Hol i dayRequest” name="Hol i dayRequest "/ > ad
</ wsdl : ressage>
<wsdl : port Type nane="HumanResource"> O
<wsdl : operati on nanme="Hol i day" >
<wsdl : i nput nmessage="t ns: Hol i dayRequest" nane="Hol i dayRequest"/> O

</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : bi ndi ng nanme="HumanResour ceBi ndi ng" type="tns: HunanResour ce" > aod
<soap: bi ndi ng styl e="docunent" O
transport="http://schemas. xn soap. or g/ soap/ http"/> 0
<wsdl : operati on name="Hol i day" >
<soap: operati on soapAction="http://myconpany. conlf Request Hol i day"/ > 0
<wsdl : i nput name="Hol i dayRequest ">
<soap: body use="literal"/> O

</wsdl : i nput >
</ wsdl : operati on>
</ wsdl : bi ndi ng>
<wsdl : servi ce nane="HunmanResour ceServi ce">
<wsdl : port bi ndi ng="t ns: HumanResour ceBi ndi ng" nanme="HumanResour cePort "> O
<soap: address | ocati on="http://| ocal host: 8080/ hol i dayServi ce/"/> O
</ wsdl : port >
</ wsdl : servi ce>
</wsdl : definitions>

We import the schema defined in Section 3.3, “Data Contract”.

We define the Hol | dayRequest message, which gets used in the por t Type.

The Hol i dayRequest typeis defined in the schema.

We define the HumanResour ce port type, which gets used in the bi ndi ng.

We define the HumanResour ceBi ndi ng binding, which gets used in the port .

We use a document/literal style.

Thelitera htt p: // schemas. xm soap. or g/ soap/ ht t p signifiesa HTTP transport.

The soapAct i on attribute signifies the soapAct i on HTTP header that will be sent with every request.

The http://1ocal host: 8080/ hol i daySer vi ce/ address is the URL where the Web service can be
invoked.

I I O

Spring-WS (1.0.4) 12

Writing Contract-First Web Services

This is the fina WSDL. We will describe how to implement the resulting schema and WSDL in the next
section.

3.5. Creating the project

In this section, we will be using Maven2 to create the initia project structure for us. Doing so is not required,
but gresatly reduces the amount of code we have to write to setup our HolidayService.

The following command creates a Maven2 web application project for us, using the Spring-WS archetype (that
is, project template)

nmvn ar chet ype: create -DarchetypeG oupl d=or g. spri ngframework. ws \
- DarchetypeArtifact! d=spring-ws-archetype \
- Dar chet ypeVer si on=1. 0. 4 \
- Dgr oupl d=com myconpany. hr \
-Dartifactld=holidayService

This command will create a new directory called holidayService. In this directory, there is a
" src/ mai n/ webapp' directory, which will contain the root of the WAR file. You will find the standard web
application deployment descriptor ' WEB- I NF/web. xni* here, which defines a Spring-WS
MessageDi spat cher Servl et and maps all incoming requests to this servlet:

<web-app xm ns="http://java. sun. coni xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun. com xnl / ns/j 2ee
http://java. sun. com xm / ns/j 2ee/ web- app_2_4. xsd"
versi on="2.4">

<di spl ay- name>MyConpany HR Hol i day Servi ce</di spl ay- name>

<I-- take especial notice of the nane of this servliet -->
<servl et >

<servl et - nane>spri ng- ws</ servl et - nanme>

<servl et -cl ass>org. spri ngfranmewor k. ws. transport. http. MessageDi spat cher Servl et </ servl et - cl ass>
</ servl et >

<servl et - mappi ng>
<servl et - name>spri ng- ws</ servl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

In addition to the above ' VEB- | NF/ web. xmi * file, you will also need another, Spring-WS-specific configuration
file, named ' WEB- | NF/ spri ng-ws-servl et. xn ' . Thisfile contains al of the Spring-WS-specific beans such as
EndPoi nt s, WebSer vi ceMessageRecei ver s, and suchlike, and is used to create a new Spring container. The
name of this file is derived from the name of the attendant servlet (in this case ' spring-ws') with
"-servlet.xm"' appended to it. So if you defined a MessageDi spat cher Servl et with the name ' dynanite',
the name of the Spring-WS-specific configuration file would be* VEB- | NF/ dynani t e-servl et. xm * .

(Y ou can see the contents of the' WEB- | NF/ spri ng-ws-servl et. xm ' filefor thisexamplein ??7?.)

3.6. Implementing the Endpoint

In Spring-WS, you will implement Endpoints to handle incoming XML messages. There are two flavors of
endpoints. message endpoints and payload endpoints. Message endpoints give access to the entire XML
message, including SOAP headers. Typically, the endpoint will only be interested in the payload of the

Spring-WS (1.0.4) 13

http://maven.apache.org/

Writing Contract-First Web Services

message, that is the contents of the SOAP body. In that case, creating a payload endpoint makes more sense.

3.6.1. Handling the XML Message

In this sample application, we are going to use JDom to handle the XML message. We are also using XPath,
because it alows us to select particular parts of the XML JDOM tree, without requiring strict schema
conformance. We extend our endpoint from Abst r act JDonPay| oadEndpoi nt , because that will give usa JDOM
element to execute the XPath queries on.

package com nyconpany. hr.ws;

i mport java.text. Sinpl eDat eFor mat ;
i nport java.util.Date;

i nport com nyconpany. hr. servi ce. HumanResour ceSer vi ce;
i mport org.jdom El enent;
i mport org.jdom JDOVExcepti on;
i mport org.jdom Nanespace;
i nport org.jdom xpat h. XPat h;
i mport org.springframework. ws. server. endpoi nt. Abst ract JDonPayl oadEndpoi nt ;
public class HolidayEndpoi nt extends AbstractJDonPayl oadEndpoi nt {
private XPath start Dat eExpression;
private XPath endDat eExpressi on;
private XPath naneExpressi on;

private final HumanResourceServi ce humanResour ceServi ce;

publ i ¢ Hol i dayEndpoi nt (HumanResour ceServi ce hunmanResour ceServi ce) { O
t hi s. hunanResour ceSer vi ce = humanResour ceSer vi ce;
Nanespace nanespace = Nanespace. get Nanespace("hr", "http://nyconpany. conl hr/schenmas");

st art Dat eExpressi on = XPat h. new nstance("//hr: StartDate");

st art Dat eExpr essi on. addNanespace(nanespace) ;

endDat eExpr essi on = XPat h. new nstance("//hr: EndDate");

endDat eExpr essi on. addNanespace(nanespace) ;

nanmeExpressi on = XPat h. newl nst ance("concat (//hr: FirstName,' ',//hr:Last Nanme)");
nanmeExpr essi on. addNanmespace(nanespace) ;

}
protected El ement invokel nternal (El ement hol i dayRequest) throws Exception { 0
Si npl eDat eFor mat dat eFor mat = new Si npl eDat eFor nat ("yyyy- Mt dd") ;
Date startDate = dat eFornat. parse(start Dat eExpression. val ued (hol i dayRequest));
Dat e endDat e = dat eFor mat . par se(endDat eExpr essi on. val ueX (hol i dayRequest));
String nane = naneExpression. val uek (hol i dayRequest);
humanResour ceSer vi ce. bookHol i day(start Date, endDate, nane);
return null;
}

0 The Hol i dayEndpoi nt requires the HumanResour ceSer vi ce business service to operate, so we inject the
dependency via the constructor. Next, we set up XPath expressions using the JDOM API. There are three
expressions: / / hr: St art Dat e for extracting the <St ar t Dat e> text value, / / hr : EndDat e for extracting the
end date and concat (// hr: FirstNare,' ',//hr:Last Nane) for extracting and concatenating the names
of the employee.

O Theinvokel nternal (..) method is a template method, which gets passed with the <Hol i dayRequest / >
element from the incoming XML message. We use the X Path expressions to extract the string values from
the XML messages, and convert these values to Dat e objects using a Si npl eDat eFor mat . With these
values, we invoke a method on the business service. Typicaly, this will result in a database transaction
being started, and some records being altered in the database. Finally, we return nul |, which indicates to
Spring-WS that we do not want to send a response message. |f we wanted a response message, we could
have returned a JDOM Element that represents the payload of the response message.

Spring-WS (1.0.4) 14

http://www.jdom.org
http://www.w3schools.com/xpath/

Writing Contract-First Web Services

Using JDOM s just one of the options to handle the XML.: other options include DOM, domd4j, XOM, SAX,
and StAX, but also marshalling techniques like JAXB, Castor, XMLBeans, JBX, and XStream. We chose
JDOM because it gives us access to the raw XML, and because it is based on classes (not interfaces and factory
methods as with W3C DOM and dom4j), which makes the code less verbose. We use X Path because it is less
fragile than marshalling technologies: we don't care for strict schema conformance, as long as we can find the
dates and the name.

Because we use JDOM, we must add some dependencies to the Maven pom xni , which is in the root of our
project directory. Here is the relevant section of the POM:

<dependenci es>

<dependency>
<gr oupl d>or g. spri ngf r anewor k. ws</ gr oupl d>
<artifactld>spring-ws-core</artifactld>
<versi on>1. 0. 4</ ver si on>

</ dependency>

<dependency>
<gr oupl d>j donx/ gr oupl d>
<artifactld>jdonx/artifactld>
<ver si on>1. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>j axen</ gr oupl d>
<artifactld>jaxen</artifactld>
<versi on>1. 1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>j avax. xm . soap</ gr oupl d>
<artifactld>saaj-api</artifactld>
<versi on>1. 3</ ver si on>
<scope>runti me</ scope>

</ dependency>

<dependency>
<gr oupl d>com sun. xm . messagi ng. saaj </ gr oupl d>
<artifactld>saaj-inpl</artifactld>
<ver si on>1. 3</ver si on>
<scope>runti me</ scope>

</ dependency>

<dependenci es>

Here is how we would configure these classesin our spri ng-ws-servl et . xni Spring XML configuration file:

<beans xm ns="http://ww. springframework. or g/ schema/ beans" >

<bean i d="hol i dayEndpoi nt" cl ass="com nyconpany. hr. ws. Hol i dayEndpoi nt ">
<constructor-arg ref="hrService"/>
</ bean>

<bean i d="hr Service" class="com myconpany. hr. servi ce. St ubHumanResour ceSer vi ce"/ >

</ beans>

3.6.2. Routing the Message to the Endpoint

Now that we have written an endpoint that handles the message, we must define how incoming messages are
routed to that endpaint. In Spring-WS, this is the responsibility of an Endpoi nt Mappi ng. In this tutorial, we will
route messages based on their content, by using a Payl oadRoot QNaneEndpoi nt Mappi ng. Here is how we
configure a Payl oadRoot QNaneEndpoi nt Mappi ng iNspri ng-ws-servl et. xm :

<bean cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot QNaneEndpoi nt Mappi ng" >
<property nanme="nmappi ngs">
<pr ops>
<prop key="{http://myconpany.coni hr/schemas} Hol i dayRequest " >hol i dayEndpoi nt </ pr op>
</ props>

Spring-WS (1.0.4) 15

Writing Contract-First Web Services

</ property>
<property nanme="interceptors">
<bean cl ass="org. spri ngframework. ws. server. endpoi nt.interceptor.Payl oadLoggi ngl nt erceptor"/>
</ property>
</ bean>

This means that whenever an XML message is received with the namespace
http://myconpany. conf hr/ schemas and the Hol i dayRequest local name, it will be routed to the
hol i dayEndpoi nt . (It also adds a Payl oadLoggi ngl nt er cept or, that dumps incoming and outgoing messages
tothelog.)

3.7. Publishing the WSDL

Finally, we need to publish the WSDL. As stated in Section 3.4, “Service contract”, we don't need to write a
WSDL ourselves; Spring-WS can generate one for us based on some conventions. Here is how we define the
generation:

<bean id="holiday" class="org.springframework.ws.wsdl.wsdl 11. Dynam cWsdl 11Defi ni ti on"> 0
<property name="bui |l der">
<bean cl ass="org. spri ngfranmewor k. ws. wsdl . wsdl 11. bui | der . XsdBasedSoap11Wsdl 4j Defi ni ti onBui | der" >

<property name="schema" val ue="/WEB-| NF/ hr. xsd"/> O
<property name="port TypeNane" val ue="HumanResource"/> O
<property nanme="locationUri" value="http://I| ocal host: 8080/ hol i dayService/"/> ad
<property nanme="t ar get Nanespace" val ue="http://myconpany. com hr/definitions"/> O
</ bean>
</ property>
</ bean>

O The bean id determines the URL where the WSDL can be retrieved. In this case, the bean id is hol i day,
which means that the WSDL can be retrieved as hol i day. wsdl in the serviet context. The full URL will
typically behttp: //1 ocal host : 8080/ hol i daySer vi ce/ hol i day. wsdl .

O Theschema property is set to the human resource schema we defined in Section 3.3, “Data Contract”: we
simply placed the schemain the ves- I NF directory of the application.

O Next, we define the WSDL port type to be HumanResour ce.

O We set the location where the service can be reached: http://1 ocal host: 8080/ hol i dayServi ce. For
development, this will suffice, but obviousy we need to change this to
ht t p: // myconpany. con hunanr esour ces When going live. A common way to to accomplish thisisto use
aSpring Pr oper t yPl acehol der Confi gurer.

O Finaly, we define the target namespace for the WSDL definition itself. Setting these is not required. If not
set, we give the WSDL the same namespace as the schema.

You can create a WAR file using mvn install. If you deploy the application (to Tomcat, Jetty, etc.), and point
your browser at this location, you will see the generated WSDL. This WSDL is ready to be used by clients,
such as soapUl, or other SOAP frameworks.

That concludes this tutorial. The tutorial code can be found in the full distribution of Spring-WS. The next step
would be to look at the echo sample application that is part of the distribution. After that, look at the airline
sample, which is a bit more complicated, because it uses JAXB, WS-Security, Hibernate, and a transactional
service layer. Finally, you can read the rest of the reference documentation.

Spring-WS (1.0.4) 16

http://localhost:8080/holidayService/holiday.wsdl
http://www.soapui.org/

Part Il. Reference

This part of the reference documentation details the various components that comprise Spring Web Services.
This includes a chapter that discusses the parts common to both client- and server-side WS, a chapter devoted
to the specifics of writing server-side Web services, a chapter about using Web services on the client-side, and
chapters on using WS-Security and Object/XML mapping.

Spring-WS (1.0.4) 17

Chapter 4. Shared components

In this chapter, we will explore the components which are shared between client- and server-side Spring-WS
development. These interfaces and classes represent the building blocks of Spring-WS, so it is important to
understand what they do, even if you do not use them directly.

4.1. Web service messages

4.1.1. WebSer vi ceMessage

One of the core interfaces of Spring Web Services is the wbServi ceMessage. This interface represents a
protocol-agnostic XML message. The interface contains methods that provide access to the payload of the
message, in the form of a javax. xni . transform Source Or a javax.xn .transform Result. Source and
Result are tagging interfaces that represent an abstraction over XML input and output. Concrete
implementations wrap various XML representations, as indicated in the following table.

Sour ce/Result implementation Wraps XML representation

javax. xm . transf orm dom DOVSour ce or g. w3c. dom Node

javax. xm . transf orm dom DOVResul t or g. w3c. dom Node

javax. xm .t ransf or m sax. SAXSour ce org. xm . sax. | nput Sour ce and

org. xm . sax. XM_Reader
javax. xm . transform sax. SAXResul t org. xm . sax. Cont ent Handl er

javax. xm . transform stream StreanSource java.io.File, java.io.lnputStream or
java.i o. Reader

javax. xm . transform stream StreanResul t java.io.File, java.io. Qut put St ream or
java.io. Witer

In addition to reading from and writing to the payload, a Web service message can write itself to an output
stream.

4.1.2. SoapMessage

The SoapMessage is a subclass of webSer vi ceMessage. It contains SOAP-specific methods, such as getting
SOAP Headers, SOAP Faullts, etc. Generally, your code should not be dependent on SoapMessage, because the
content of the SOAP Body can be obtained via get Payl oadSource() and get Payl oadResul t () in the
WebSer vi ceMessage. Only when it is necessary to perform SOAP-specific actions, such as adding a header, get
an attachment, etc., should you need to cast WebSer vi ceMessage t0 SoapMessage.

4.1.3. Message Factories

Concrete message implementations are created by a WebSer vi ceMessageFact ory. This factory can create an
empty message, or read a message based on an input stream. There are two concrete implementations of
WebSer vi ceMessageFact ory; one is based on SAAJ, the SOAP with Attachments API for Java, the other based
on Axis 2's AXIOM, the AXis Object Model.

Spring-WS (1.0.4) 18

Shared components

4.1.3.1. Saaj SoapMessageFact ory

The Saaj SoapMessageFactory uses the SOAP with Attachments APl for Java to create SoapMessage
implementations. SAAJ is part of J2EE 1.4, so it should be supported under most modern application servers.
Hereisan overview of the SAAJ versions supplied by common application servers:

Application Server SAAJ Version
BEA WebLogic 8 11

BEA WebL ogic 9 1.1/1.22

IBM WebSphere 6 12

SUN Glassfish 1 13

2 Weblogic 9 has a known bug in the SAAJ 1.2 implementation: it implement al the 1.2 interfaces, but throws a
Unsuppor t edOper at i onExcept i on when called. Spring Web Services has aworkaround: it uses SAAJ 1.1 when operating on WebLogic 9.

Additionally, Java SE 6 includes SAAJ 1.3. Y ou wire up a Saaj SoapMessageFact ory like so:

<bean i d="nessageFactory" cl ass="org. springframework. ws. soap. saaj . Saaj SoapMessageFact ory" />

Note

SAAJ is based on DOM, the Document Object Model. This means that all SOAP messages are
stored in memory. For larger SOAP messages, this may not be very performant. In that case, the
Axi omBoapMessageFact ory might be more applicable.

4.1.3.2. Axi onSoapMessageFact ory

The Axi onSoapMessageFact ory uses the AXis 2 Object Model to create SoapMessage implementations.
AXIOM is based on StAX, the Streaming API for XML. StAX provides a pull-based mechanism for reading
XML messages, which can be more efficient for larger messages.

To increase reading performance on the Axi onSoapMessageFact ory, You can set the payloadCaching property
to false (default is true). This will read the contents of the SOAP body directly from the stream. When this
setting is enabled, the payload can only be read once. This means that you have to make sure that any
preprocessing of the message does not consume it.

Y ou use the Axi onSoapMessageFact ory as follows:

<bean i d="nessageFactory" cl ass="org. springfranmework. ws. soap. axi om Axi onSoapMessageFact ory" >
<property nanme="payl oadCachi ng" val ue="true"/>
</ bean>

41.3.3.SOAP 1.10r1.2

Both the Saaj SoapMessageFact ory and the Axi onSoapMessageFact ory have a soapVersion property, where
you can inject a SoapVer si on constant. By default, the versionis 1.1, but you an set it to 1.2 like so:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns:util="http://wwm.springframework. org/schema/util"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schema/ beans

Spring-WS (1.0.4) 19

Shared components

htt p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. org/ schenma/ uti |
http://ww. springframework. org/ schema/util/spring-util-2.0.xsd">

<bean i d="nessageFactory" cl ass="org. springfranmework. ws. soap. saaj . Saaj SoapMessageFact ory" >
<property nanme="soapVersion">
<util:constant static-field="org.springfranmework.ws. soap. SoapVer si on. SOAP_12"/ >
</ property>
</ bean>

</ beans>

In the example above, we define a Saaj SoapMessageFact ory that only accepts SOAP 1.2 messages.
Caution

Even though both versions of SOAP are quite similar in format, the 1.2 version is not backwards
compatible with 1.1 because it uses a different XML namespace. Other major differences between
SOAP 1.1 and 1.2 include the different structure of a Fault, and the fact that soapActi on HTTP
headers are deprecated, which means that you cannot use the SoapAct i onEndpoi nt Mappi ng or the
SoapAct i onAnnot at i onMet hodEndpoi nt Mappi ng.

One important thing to note with SOAP version numbers, or WS-* specification version numbers
in general, is that the latest version of a specification is generally not the most popular version. For
SOAP, this means that currently, the best version to use is 1.1. Version 1.2 might become more
popular in the future, but currently 1.1 is the safest bet.

4.1.4. MessageCont ext

Typically, messages come in pairs. a request and a response. A request is created on the client-side, which is
sent over some transport to the server-side, where a response is generated. This response gets sent back to the
client, where it isread.

In Spring Web Services, such a conversation is contained in a MessageCont ext , which has properties to get
request and response messages. On the client-side, the message context is created by the vebSer vi ceTenpl at e.
On the server-side, the message context is read from the transport-specific input stream. For example, in HTTP,
itisread from the Ht t pSer vl et Request and the response is written back to the Ht t pSer vi et Response.

4.2. Transport Cont ext

One of the key properties of the SOAP protocol is that it tries to be transport-agnostic. This is why, for
instance, Spring-WS does not support mapping messages to endpoints by HTTP request URL, but rather by
mesage content.

However, sometimes it is necessary to get access to the underlying transport, either on the client or server side.
For this, Spring Web Services has the Tr anspor t Cont ext . The transport context allows access to the underlying
WebSer vi ceConnection, Which typically is a HitpServletConnection oOn the server side; or a
Htt pUr | Connect i on Or CommonsHt t pConnect i on on the client side. For example, you can obtain the |P address
of the current request in a server-side endpoint or interceptor like so:

Transport Cont ext context = Transport Cont ext Hol der. get Transport Cont ext () ;

Ht t pSer vl et Connecti on connection = (HttpServl et Connecti on)context.get Connection();
Ht t pSer vl et Request request = connecti on. get Htt pSer vl et Request () ;

String i pAddress = request. get Renot eAddr () ;

Spring-WS (1.0.4) 20

Shared components

4.3. Handling XML With XPath

One of the best ways to handle XML isto use XPath. Quoting [effective-xml], item 35:

XPath is a fourth generation declarative language that allows you to specify which nodes you
want to process without specifying exactly how the processor is supposed to navigate to those
nodes. XPath's data model is very well designed to support exactly what ailmost all developers
want from XML. For instance, it merges all adjacent text including that in CDATA sections,
allows values to be calculated that skip over comments and processing instructions’ and
include text from child and descendant elements, and requires all external entity references to
be resolved. In practice, XPath expressions tend to be much more robust against unexpected
but perhapsinsignificant changesin the input document.

—Elliotte Rusty Harold

Spring Web Services has two ways to use XPath within your application: the faster XPat hExpr essi on or the
more flexible XPat hTenpl at e.

4.3.1. XPat hExpr essi on

The XpPat hExpression is an abstraction over a compiled XPath expression, such as the Java 5
j avax. xnl . xpat h. XPat hExpr essi on, Or the Jaxen xPat h class. To construct an expression in an application
context, there is the xPat hExpr essi onFact or yBean. Here is an example which uses this factory bean:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngframework. or g/ scherma/ beans/ spri ng- beans- 2. 0. xsd" >

<bean i d="nameExpressi on" cl ass="org. spri ngframewor k. xnl . xpat h. XPat hExpr essi onFact or yBean" >
<property name="expression" val ue="/Contacts/ Contact/Nane"/>
</ bean>

<bean i d="nyEndpoi nt" cl ass="sanpl e. MyXPat hCl ass" >
<constructor-arg ref="nameExpression"/>
</ bean>

</ beans>

The expression above does not use hamespaces, but we could set those using the namespaces property of the
factory bean. The expression can be used in the code as follows:

package sanpl e;
public class MyXPat hC ass {
private final XPathExpression naneExpression;
publ i c MyXPat hCl ass(XPat hExpr essi on naneExpr essi on) {

t hi s. naneExpr essi on = naneExpr essi on;
}

public void doXPat h(Docunment document) {

String nane = naneExpressi on. eval uat eAsStri ng(docunent. get Docunent El enent ());
System out. println("Nane: " + nane);

For a more flexible approach, you can use a NodeMapper , which is similar to the Rowvapper in Spring's JDBC

Spring-WS (1.0.4) 21

Shared components

support. The following example shows how we can use it:

package sanpl e;
public class MyXPat hC ass {
private final XPathExpression contact Expression;

publ i c MyXPat hC ass(XPat hExpr essi on cont act Expr essi on) {
t hi s. cont act Expressi on = cont act Expr essi on;
}

public void doXPat h(Docunment docunent) {
Li st contacts = naneExpressi on. eval uat e(request El enent ,
new NodeMapper () {
public nject mapNode(Node node, int nodeNun) throws DOVException {
El ement contactEl enent = (El ement) node;
El ement naneEl enent = (El enent) contact El enent . get El ement sByTagNane("Nange").iten(0);
El ement phoneEl ement = (El ement) contact El ement . get El ement sBy TagNanme(" Phone") .iten(0);
return new Cont act (naneEl enent . get Text Cont ent (), phoneEl enent. get Text Content());

}
55

/! do something with |ist of Contact objects

Similar to mapping rows in Spring JDBC's RowMapper , €ach result node is mapped using an anonymous inner
class. In this case, we create a Cont act object, which we use later on.

4.3.2. XPat hTenpl at e

The xPat hExpr essi on only allows you to evaluate a single, pre-compiled expression. A more flexible, though
slower, alternative is the Xpat hTenpl at e. This class follows the common template pattern used throughout
Spring (JdbcTemplate, InsTemplate, etc.). Hereis an example:

package sanpl e;

public class MyXPat hCl ass {
private XPathOperations tenplate = new Jaxpl3XPat hTenpl ate();
public void doXPat h(Source source) {

String nane = tenpl ate. eval uateAsString("/ Cont acts/ Contact/Nane", request);
// do sonething with name

Spring-WS (1.0.4) 22

Chapter 5. Creating a Web service with Spring-WS

5.1. Introduction

Spring-WS's server-side support is designed around a MessageDi spat cher that dispatches incoming messages
to endpoints, with configurable endpoint mappings, response generation, and endpoint interception. The
simplest endpoint is a Payl oadEndpoi nt , which just offers the Sour ce i nvoke(Source request) method. You
are of course free to implement this interface directly, but you will probably prefer to extend one of the
included abstract implementations such as Abst r act DonPay| oadEndpoi nt , Abst r act SaxPayl oadEndpoi nt , and
Abst ract Mar shal | i ngPayl oadEndpoi nt . Alternatively, there is a endpoint development that uses Java 5
annotations, such as @ndpoi nt for marking a POJO as endpoint, and marking a method with @ayl oadRoot Or
@soapAct i on.

Spring-WS's XML handling is extremely flexible. An endpoint can choose from a large amount of XML
handling libraries supported by Spring-WS, including the DOM family (W3C DOM, JDOM, dom4j, and
XOM), SAX or StAX for faster performance, XPath to extract information from the message, or even
marshalling techniques (JAXB, Castor, XMLBeans, JBX, or XStream) to convert the XML to objects and
vice-versa.

5.2. The MessageDi spat cher

The server-side of Spring-WS is designed around a central class that dispatches incoming XML messages to
endpoints. Spring-WS's MessageDi spat cher is extremely flexible, allowing you to use any sort of class as an
endpoint, as long as it can be configured in the Spring 10C container. In a way, the message dispatcher
resembles Spring's Di spat cher Ser vl et , the “Front Controller” used in Spring Web MV C.

The processing and dispatching flow of the MessageDi spat cher is illustrated in the following sequence
diagram.

‘MessageDispatcher :EndpointMapping :EndpointAdapter endpaint

dispatch{request) E

-

getEndpoint{request)

endpoint i
- _s_u;_ar_mz_br_tsglendpﬂint] n i
[T invoke(request, endpoint) | |
E invoke(request) :
: ., ___Tesponse
] response 1

response

The request processing workflow in Spring Web Services

When a MessageDi spat cher IS set up for use and a request comes in for that specific dispatcher, said
MessageDi spat cher starts processing the request. The list below describes the complete process a request goes
through when handled by a MessageDi spat cher :

Spring-WS (1.0.4) 23

Creating a Web service with Spring-WS

1. An appropriate endpoint is searched for using the configured Endpoi nt Mappi ng(s) . If an endpoint is found,
the invocation chain associated with the endpoint (preprocessors, postprocessors, and endpoints) will be
executed in order to create a response.

2. An appropriate adapter is searched for the endpoint. The MessageDi spat cher delegates to this adapter to
invoke the endpoint.

3. If aresponse is returned, it is sent on its way. If no response is returned (which could be due to a pre- or
post-processor intercepting the request, for example, for security reasons), no response is sent.

Exceptions that are thrown during handling of the request get picked up by any of the endpoint exception
resolvers that are declared in the application context. Using these exception resolvers allows you to define
custom behaviors (such as returning a SOAP Fault) in case such exceptions get thrown.

The MessageDi spat cher has several properties, for setting endpoint adapters, mappings, exception resolvers.
However, setting these properties is not required, since the dispatcher will automatically detect al of these
types that are registered in the application context. Only when detection needs to be overriden, should these
properties be set.

The message dispatcher operates on a message context, and not transport-specific input stream and output
stream. As aresult, transport specific requests need to read into a MessageCont ext . For HTTP, thisis done with
a WebSer vi ceMessageRecei ver Handl er Adapt er, which is a Spring Web Handl er I nt ercept or, SO that the
MessageDi spat cher can bewired in astandard Di spat cher Ser vl et . Thereis amore convenient way to do this,
however, which is shown in the next section.

5.2.1. MessageDi spat cher Ser vl et

The MessageDi spat cher Servl et is a standard Ser vl et which conveniently extends from the standard Spring
Web Di spat cher Servl et, and wraps a MessageDi spat cher . AS such, it combines the attributes of these into
one: as a MessageDi spat cher , it follows the same request handling flow as described in the previous section.
As a servlet, the MessageDi spat cher Servl et is configured in the web. xm of your web application. Requests
that you want the Messagebi spat cher Ser vl et to handle will have to be mapped using a URL mapping in the
same web.xm file. This is standard Java EE servlet configuration; an example of such a
MessageDi spat cher Ser vl et declaration and mapping can be found below.

<web- app>

<servl et >
<servl et - nane>spri ng- ws</ servl et - nane>
<servl et -cl ass>org. spri ngfranmework.ws.transport.http. MessageDi spat cher Servl et </ servl et -cl ass>
<l oad- on- st art up>1</1| oad- on- st art up>

</servlet>

<servl et - mappi ng>
<servl et - nanme>spri ng- ws</ servl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

In the example above, al requests will be handled by the * spring-ws' MessageDi spat cher Servl et. Thisis
only the first step in setting up Spring Web Services, because the various component beans used by the
Spring-WS framework also need to be configured; this configuration consists of standard Spring XML <bean/ >
definitions. Because the MessageDi spat cher Servl et iS a standard Spring Di spat cher Ser vl et , it will ook for
a file named [servl et - nane] - servl et. xn in the WEB- | NF directory of your web application and create the
beans defined there in a Spring container. In the example above, that means that it looks for

Spring-WS (1.0.4) 24

Creating a Web service with Spring-WS

/ WEB- | NF/ spring-ws-servl et.xm . This file will contain al of the SWS-specific beans such as endpoints,
marshallers and suchlike.

5.2.1.1. Automatic WSDL exposure

The MessageDbi spat cher Servl et Will automatically detect any wsdl Defi ni ti on beans defined in it's Spring
container. All such wsdiDefinition beans that are detected will aso be exposed via a
wsdl Defi niti onHandl er Adapt er ; thisisavery convenient way to expose your WSDL to clients ssmply by just
defining some beans.

By way of an example, consider the following bean definition, defined in the Spring-WS framework's
configuration file ('/ WEB-1 NF/ [servl et - nane] -servl et. xm *). Take notice of the value of the bean's 'i d'
attribute, because this will be used when exposing the WSDL.

<bean i d="orders" class="org.springframework.ws.wsdl.wsdl 11. Si npl eWsdl 11Defi ni ti on">
<constructor-arg val ue="/WEB- | NF/ wsdl / Or ders. wsdl "/ >
</ bean>

The WSDL defined in the 'or der s. wsdl ' file can then be accessed via GET requests to a URL of the following
form (substitute the host, port and servlet context path as appropriate).

http://1ocal host: 8080/ spri ng-ws/ orders. wsd

Another cool feature of the MessageDi spatcher Servl et (or more correctly the
Wsdl Defi niti onHandl er Adapt er) iSsthat it is able to transform the value of the 'l ocat i on' of al the WSDL that
it exposes to reflect the URL of the incoming request.

Please note that this 'l ocat i on' transformation feature is off by default.To switch this feature on, you just need
to specify an initialization parameter to the Messagebi spat cher Ser vl et , like so:

<web- app>

<servl et >
<servl et - nane>spri ng- ws</ servl et - nane>
<servl et -cl ass>org. spri ngfranmewor k. ws. transport. http. MessageDi spat cher Servl et </ servl et - cl ass>
<init-paranr
<par am nane>t r ansf or mMAédl Locat i ons</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paranp
</ servl et >
<servl et - mappi ng>
<servl et - nanme>spri ng- ws</ servl et - nane>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>

</ web- app>

Consult the class-level Javadoc on the wdl Defi ni ti onHandl er Adapt er class which explains the whole
transformation process in more detail.

5.2.1.1.1. Exposing a static WSDL

As indicated above, a static WSDL file can be exposed by using the Si npl ewsdl 11Def i ni ti on. Simply wire it
up, and give it aResour ce for the wsdl property, or use the contructor, as shown in the example above.

5.2.1.1.2. Dynamically creating a WSDL from an XSD

As shown in Section 3.7, “Publishing the WSDL", Spring Web Services can generate aWSDL file from a XSD

Spring-WS (1.0.4) 25

Creating a Web service with Spring-WS

schema, using conventions. The next application context snippet shows how to create such a dynamic WSDL
file:

<bean i d="hol i day" cl ass="org. springframework. ws. wsdl . wsdl 11. Dynam cWdl 11Defi ni ti on">
<property name="buil der">
<bean cl ass="org. spri ngfranmewor k. ws. wsdl . wsdl 11. bui | der . XsdBasedSoap11Wsdl 4j Defi ni ti onBui | der ">
<property name="schema" val ue="/WEB- | NF/ xsd/ O ders. xsd"/>
<property name="port TypeNane" val ue="Orders"/>
<property name="locationUri" value="http://I| ocal host: 8080/ or dersService/"/>
</ bean>
</ property>
</ bean>

The Dynami cWsdl 11Def i ni ti on USeS a Wsdl 11Def i ni ti onBui | der implementation to generate a WSDL the
first time it is requested. Typically, we use a XsdBasedSoap11Wdl 4j Defi ni ti onBui | der, which builds a
WSDL from a XSD schema. This builder iterates over all el ement elements found in the schema, and creates a
nmessage for elements that end with the defined request or response suffix. The default request suffix is
Request ; the default response suffix is Response, though these can be changed by setting the requestSuffix and
responseSuffix properties, respectively. Next, the builder combines the request and response messages into a
WSDL oper at i ons, and builds apor t Type based on the operations.

For instance, if our o ders. xsd schema defines the Get Or der sRequest and Get Or der sResponse €lements, the
XsdBasedSoap11Wédl 4j Def i ni ti onBui | der Will create aGet Or der sRequest and Get Or der sResponse MeSSsage,
and aGet Or der s operation, which isput in aor der s port type.

5.2.2. Wiring up Spring-WS in a Di spat cher Ser vl et

As an dternative to the MessageDi spat cher Servl et, YOU Ccan wire up a MessageDi spat cher in a standard,
Spring-Web MV C Di spat cher Ser vl et . By default, the Di spat cher Ser vl et can only delegate to Control | ers,
buu we can instruct it to delegate to a MessageDispatcher by adding a
WebSer vi ceMessageRecei ver Handl er Adapt er t0 the servlet's web application context:

<beans>
<bean cl ass="org. spri ngfranmework.ws. transport. http. WbServi ceMessageRecei ver Handl er Adapter"/ >
<bean cl ass="org. spri ngfranmewor k. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >
<property name="defaul t Handl er" ref="nmessageD spatcher"/>

</ bean

<bean i d="nessageDi spat cher" cl ass="org. spri ngfranmework. ws. server. MessageDi spat cher"/ >

<bean cl ass="org. spri ngframewor k. web. servl et. nmvc. Si npl eControl | er Handl er Adapter"/>

Note that by explicitely adding the webSer vi ceMessageRecei ver Handl er Adapt er, the dispatcher servlet does
not load the default adapters, and is unable to handle standard Spring-MVC cControl | ers. Therefore, we add
the Si npl eCont rol | er Handl er Adapt er at the end.

5.3. Endpoints

Endpoints are the central concept in Spring-WS's server-side support. Endpoints provide access to the
application behavior which is typically defined by a business service interface. An endpoint interprets the XML
request message and uses that input to invoke a method on the business service (typically). The result of that
service invocation is represented as a response message. Spring-WS has a wide variety of endpoints, using
various waysto handle the XML message, and to create a response.

Spring-WS (1.0.4) 26

Creating a Web service with Spring-WS

The basis for most endpoints in Spring Web Services is the

org. spri ngf ramewor k. ws. server . endpoi nt . Payl oadEndpoi nt interface, the source code of which is listed
below.

public interface Payl oadEndpoint {

/**

* | nvokes an operation.
*/
Sour ce invoke(Source request) throws Exception;

As you can see, the Payl oadEndpoi nt interface defines a single method that is invoked with the XML payload
of a request (typicaly the contents of the SOAP Body, see Section 4.1.2, “SoapMessage”). The returned
Sour ce, if any, is stored in the response XML message. While the Payl oadEndpoi nt interface is quite abstract,
Spring-WS offers alot of endpoint implementations out of the box that already contain alot of the functionality
you might need. The Payl oadEndpoi nt interface just defines the most basic responsibility required of every
endpoint; namely handling a request and returning a response.

Alternatively, there is the MessageEndpoi nt, which operates on a whole MessageCont ext rather than just the
payload. Typically, your code should not be dependent on messages, because the payload should contain the
information of interest. Only when it is necessary to perform actions on the message as a whole, such as adding
a SOAP header, get an attachment, and so forth, should you need to implement MessageEndpoi nt , though these
actions are usually performed in an endpoint interceptor.

5.3.1. Abst r act DonPayl oadEndpoi nt and other DOM endpoints

One of the most basic ways to handle the incoming XML payload is by using a DOM (Document Object
Model) API. By extending from Abst r act DonPayl oadEndpoi nt, you can use the org.w3c.dom.Element and
related classes to handle the request and create the response. When using the Abst r act DonPay| oadEndpoi nt as
the baseclass for your endpoints you only have to override thei nvokel nt er nal (El enent, Docurent) method,
implement your logic, and return an El enent if aresponse is necessary. Here is a short example consisting of a
class and a declaration in the application context.

package sanpl es;
public cl ass Sanpl eEndpoi nt ext ends Abstract DonmPayl oadEndpoi nt {
private String responseText;

publ i ¢ Sanpl eEndpoi nt (String responseText) {
this.responseText = responseText;
}

protected El ement invokel nternal (
El ement request El enent,
Docunent docunent) throws Exception {
String request Text = requestEl ement. get Text Content ();
Systemout. println("Request text: " + requestText);

El ement responseEl enent = docunent. creat eEl enment NS("http://sanples”, "response");
responseEl enent . set Text Cont ent (r esponseText) ;
return responseEl enent;

<bean i d="sanpl eEndpoi nt" cl ass="sanpl es. Sanpl eEndpoi nt ">
<constructor-arg value="Hello Wrld!"/>
</ bean>

Spring-WS (1.0.4) 27

Creating a Web service with Spring-WS

The above class and the declaration in the application context are all you need besides setting up an endpoint
mapping (see the section entitled Section 5.4, “Endpoint mappings’) to get this very simple endpoint working.
The SOAP message handled by this endpoint will look something like:

<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: // schemas. xm soap. or g/ soap/ envel ope/ " >
<SQAP- ENV: Body>
<request xm ns="http://sanpl es">
Hel | o
</ request >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Though it could also handle the following Plain Old XML (POX) message, since we are only working on the
payload of the message, and do not care whether it is SOAP or POX.

<request xm ns="http://sanpl es">
Hel |l o
</ request >

The SOAP response looks like:

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: / / schemas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body>
<response xm ns="http://sanpl es">
Hel l o Worl d!
</ response>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Besides the Abst r act DonPayl oadEndpoi nt, which uses W3C DOM, there are other base classes which use
aternative DOM APIs. Spring Web Services supports most DOM APIs, so that you can use the one you are
familiar with. For instance, the AbstractJDonPayl oadEndpoint alows you to use JDOM, and the
Abst r act XorrPay| oadEndpoi nt uses XOM to handle the XML. All of these endpoints have an i nvokel nt er nal
method similar to above. Also, consider using Spring-WS's XPath support to extract the information you need
out of the payload. (See the section entitled Section 4.3, “Handling XML With XPath” for details.)

5.3.2. Abst ract Mar shal | i ngPayl oadEndpoi nt

Rather than handling XML directly using DOM, you can use marshalling to convert the payload of the XML
message into a Java Object. Spring Web Services offers the Abst r act Mar shal | i ngPayl oadEndpoi nt for this
purpose, which is built on the marshalling abstraction described in Chapter 8, Marshalling XML using O/X
Mappers. The Abstract Mar shal | i ngPayl oadEndpoi nt has two properties: marshaller and unmarshaller, in
which you can inject in the constructor or by setters.

When extending from Abstract Marshal | i ngPayl oadEndpoint, Yyou have to override the
i nvokel nt er nal (bj ect) method, where the passed j ect represents the unmarshalled request payload, and
return an obj ect that will be marshalled into the response payload. Here is an example:

package sanpl es;

i nport org. springfranewor k. oxm Marshal | er;
i mport org.springframewor k. oxm Unmar shal | er;

public class Marshal lingOrderEndpoi nt extends Abstract Marshal | i ngPayl oadEndpoi nt {
private final O derService orderService;
publ i ¢ Sanpl eMar shal | i ngEndpoi nt (O der Servi ce order Service, Mrshaller marshaller) {

super (mar shal |l er);
this. order Service = order Servi ce;

Spring-WS (1.0.4) 28

Creating a Web service with Spring-WS

}

protected Cbject invokelnternal (Object request) throws Exception {
Or der Request order Request = (Order Request) request;
Order order = order Service. get Order (orderRequest.getld());
return order;

<beans>
<bean i d="orderEndpoi nt" cl ass="sanpl es. Marshal | i ngOr der Endpoi nt " >
<constructor-arg ref="orderService"/>
<constructor-arg ref="narshal l er"/>
</ bean>

<bean i d="marshal l er" class="org. springfranework. oxm j axb. Jaxb2Mar shal | er" >
<property nanme="cl assesToBeBound" >
<list>
<val ue>sanpl es. Or der Request </ val ue>
<val ue>sanpl es. Or der </ val ue>
</list>
</ property>
</ bean>

<bean i d="order Servi ce" class="sanpl es. Def aul t Or der Ser vi ce"/ >

<l-- Oher beans, such as the endpoint mapping -->
</ beans>

In this sample, we configure a Jaxb2Marshaller for the o der Request and Order classes, and inject that
marshaller together with the Def aul t Or der Ser vi ce into our endpoint. This business service is not shown, but it
isanormal transactional service, probably using DAOs to obtain data from a database. In the i nvokel nt er nal

method, we cast the request object to an O der Request object, which is the JAXB object representing the
payload of the request. Using the identifier of that request, we obtain an order from our business service and
return it. The returned object is marshalled into XML, and used as the payload of the response message. The
SOAP request handled by this endpoint will look like:

<SOAP- ENV: Envel ope xml ns: SOAP- ENV="htt p: / / schemas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body>
<order Request xm ns="http://sanples" id="42"/>
</ SOAP- ENV: Body >
</ SOAP- ENV: Envel ope>

The resulting response will be something like:

<SQAP- ENV: Envel ope xml ns: SOAP- ENV="ht t p: / / schenmas. xm soap. or g/ soap/ envel ope/ " >
<SQAP- ENV: Body>
<order xm ns="http://sanples" id="42">
<itemid="100">
<quantity>1</quantity>
<price>20. 0</price>
</itemr
<itemid="101">
<quantity>1</quantity>
<price>10. 0</ pri ce>
</itenp
</ or der >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Instead of JAXB 2, we could have used any of the other marshallers described in Chapter 8, Marshalling XML
using O/X Mappers. The only thing that would change in the above example is the configuration of the
mar shal | er bean.

Spring-WS (1.0.4) 29

Creating a Web service with Spring-WS

5.3.3. @ndpoi nt

The previous two programming models were based on inheritance, and handled individual XML messages.
Spring Web Services offer another endpoint with which you can aggregate multiple handling into one
controller, thus grouping functionality together. This model is based on annotations, so you can use it only with
Java 5 and higher. Here is an example that uses the same marshalled objects as above:

package sanpl es;

i mport org.springframework.ws. server. endpoi nt. annot ati on. Endpoi nt;
i nport org.springfranework.ws. server. endpoi nt . annot ati on. Payl oadRoot ;

@Endpoi nt
public class Annotati onOr der Endpoi nt {
private final O derService orderService

publ i c Annotati onOr der Endpoi nt (Order Servi ce order Service) {
this. orderService = orderService
}

@rayl oadRoot (| ocal Part = "orderRequest”, nanespace = "http://sanples")
public O der getOder(O derRequest order Request) {

return orderService. get Order (order Request.getld());
}

@Payl oadRoot (|l ocal Part = "order", nanespace = "http://sanples")
public void order(Order order) {

or der Servi ce. creat eO der (order);
}

By annotating the class with @ndpoi nt, you mark it as a Spring-W'S endpoint. Because the endpoint class can
have multiple request handling methods, we need to instruct Spring-WS which method to invoke for which
request. This is done using the @ayl oadRoot annotation: the get order method will be invoked for requests
with aor der Request local name and aht t p: // sanpl es hamespace URI; the or der method for requests with a
order loca name. For more information about these annotations, refer to Section 5.4.3,
“Met hodEndpoi nt Mappi ng”. We also need to configure Spring-WS to support the JAXB objects O der Request

and O der by defining aJaxb2mar shal | er:

<beans>

<bean i d="order Endpoi nt" cl ass="sanpl es. Annot ati onOr der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>

<bean i d="order Servi ce" cl ass="sanpl es. Def aul t O der Servi ce"/ >

<bean cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. adapt er. Generi cMar shal | i ngMet hodEndpoi nt Adapt er " >
<constructor-arg ref="marshal ler"/>
</ bean>

<bean id="marshal |l er" cl ass="org. springfranmework. oxm j axb. Jaxb2Mar shal | er" >
<property name="cl assesToBeBound" >
<list>
<val ue>sanpl es. Or der Request </ val ue>
<val ue>sanpl es. Or der </ val ue>
</list>
</ property>
</ bean>

<bean cl ass="org. springfranmework. ws. server. endpoi nt. mappi ng. Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng"/ >

</ beans>

The Generi cMarshal | i ngMet hodEndpoi nt Adapt er converts the incoming XML messages to marshalled
objects used as parameters and return value; the Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng iS the

Spring-WS (1.0.4) 30

Creating a Web service with Spring-WS

mapping that detects and handles the @ay! oadRoot annotations.

5.3.3.1. @Pat hPar am

As an aternative to using marshalling, we could have used XPath to extract the information out of the
incoming XML request. Spring-WS offers another annotation for this purpose: @Pat hParam You simply
annotate one or more method parameter with this annotation (each), and each such annotated parameter will be
bound to the evaluation of that annotation. Here is an example:

package sanpl es;
i mport javax.xm .transform Source

i mport org.springframework. ws. server. endpoi nt. annot ati on. Endpoi nt;
i nport org.springfranework.ws. server. endpoi nt . annot ati on. Payl oadRoot ;
i mport org.springframework. ws. server. endpoi nt. annot at i on. XPat hPar am

@ndpoi nt
public class AnnotationOrder Endpoi nt {

private final OrderService order Service

publ i ¢ Annot ati onOr der Endpoi nt (Or der Servi ce order Service) {
this.orderService = orderService
}

@rayl oadRoot (| ocal Part = "orderRequest", nanespace = "http://sanples")
public Source get O der (@XPat hParan("/s: order Request/ @d") double orderld) {
Order order = orderService.getOder((int) orderld);
/] create Source fromorder and return it

Since we use the prefix 's' in our XPath expression, we must bind it to the ht t p: / / sanpl es namespace:

<beans>
<bean i d="order Endpoi nt" cl ass="sanpl es. Annot ati onOr der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>

<bean i d="order Servi ce" class="sanpl es. Def aul t Or der Servi ce"/ >
<bean cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng"/ >
<bean cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. adapt er. XPat hPar amAnnot at i onMet hodEndpoi nt Adapt er " >
<property name="nanespaces">
<pr ops>
<prop key="s">http://sanpl es</prop>
</ props>
</ property>
</ bean>

</ beans>

Using the @Pat hPar am you can bind to all the data types supported by XPath:

* boolean or Bool ean

double or Doubl e
® String
* Node

* Nodeli st

Spring-WS (1.0.4) 31

Creating a Web service with Spring-WS

5.4. Endpoint mappings

The endpoint mapping is responsible for mapping incoming messages to appropriate endpoints. There are some
endpoint mappings you can use out of the box, for example, the Payl oadRoot QNameEndpoi nt Mappi ng Or the
SoapAct i onEndpoi nt Mappi ng, but let's first examine the general concept of an Endpoi nt Mappi ng.

An Endpoi nt Mappi ng delivers a Endpoi nt I nvocat i onChai n, which contains the endpoint that matches the
incoming request, and may also contain a list of endpoint interceptors that will be applied to the request and
response. When a request comes in, the MessageDi spat cher Wwill hand it over to the endpoint mapping to let it
inspect the request and come up with an appropriate Endpoi nt | nvocat i onChai n. Then the MessageDi spat cher
will invoke the endpoint and any interceptorsin the chain.

The concept of configurable endpoint mappings that can optionally contain interceptors (which can manipulate
the request or the response, or both) is extremely powerful. A lot of supporting functionality can be built into
custom Endpoi nt Mappi ngS. For example, there could be a custom endpoint mapping that chooses an endpoint
not only based on the contents of a message, but also on a specific SOAP header (or indeed multiple SOAP
headers).

Most endpoint mappings inherit from the Abst r act Endpoi nt Mappi ng, which offers an 'interceptors property,
which is the list of interceptors to use. Endpoi nt | nter cept ors are discussed in Section 5.4.4, “Intercepting
requests - the Endpoi nt | nt er cept or interface”. Additionaly, there is the 'defaultEndpoint’, which is the default
endpoint to use, when this endpoint mapping does not result in a matching endpaint.

5.4.1. Payl oadRoot QNaneEndpoi nt Mappi ng

The Payl oadRoot QNameEndpoi nt Mappi ng Will use the qualified name of the root element of the request payload
to determine the endpoint that handles it. A qualified name consists of a namespace URI and a local part, the
combination of which should be unique within the mapping. Here is an example:

<beans>

<l-- no 'id required, EndpointMpping beans are automatically detected by the MssageD spatcher -->
<bean i d="endpoi nt Mappi ng" cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot QNaneEndpoi nt Maf
<property name="mappi ngs">
<pr ops>
<prop key="{http://sanpl es}order Request" >get O der Endpoi nt </ pr op>
<prop key="{http://sanpl es}order">createO der Endpoi nt </ pr op>
</ props>
</ property>
</ bean>

<bean i d="get Order Endpoi nt" cl ass="sanpl es. Get O der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>

<bean i d="creat eO der Endpoi nt" cl ass="sanpl es. Creat eO der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>
<beans>

The qualified name is expressed as { + namespace URI +} + local part. Thus, the endpoint mapping above
routes requests for which have a payload root element with namespace http://sanples and local part
order Request to the ' get Order Endpoint'. Requests with a local part order will be routed to the
' creat eOrder Endpoi nt' .

5.4.2. SoapAct i onEndpoi nt Mappi ng

Spring-WS (1.0.4) 32

Creating a Web service with Spring-WS

Rather than base the routing on the contents of the message with the Payl oadRoot QNaneEndpoi nt Mappi ng, you
can use the soaPAct i on HTTP header to route messages. Every client sends this header when making a SOAP
request, and the header value used for arequest is defined in the WSDL. By making the SoaPAct i on unique per
operation, you can use it as adiscriminator. Here is an example:

<beans>
<bean i d="endpoi nt Mappi ng" cl ass="org. spri ngframewor k. ws. soap. server. endpoi nt. mappi ng. SoapAct i onEndpoi nt Mapg
<property nanme="nmappi ngs">
<props>
<prop key="http://sanpl es/ Request O der" >get O der Endpoi nt </ pr op>
<prop key="http://sanpl es/ Creat eOr der">creat eO der Endpoi nt </ pr op>
</ props>
</ property>
</ bean>

<bean i d="get Order Endpoi nt" cl ass="sanpl es. Get O der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>

<bean i d="creat eOr der Endpoi nt" cl ass="sanpl es. Cr eat eO der Endpoi nt " >
<constructor-arg ref="orderService"/>
</ bean>
</ beans>

The mapping above routes requests which have a SoAPActi on Of http://sanpl es/ Request Order to the
‘getOrderEndpoint’' . Requests with http://sanples/ Createarder Wwill be routed to the
‘createController'.

Caution

Note that using SOAP Action headers is SOAP 1.1-specific, so it cannot be used when using Plain
Old XML, nor with SOAP 1.2.

5.4.3. Met hodEndpoi nt Mappi ng

As explained in Section 5.3.3, “@ndpoi nt ”, the @ndpoi nt style allows you to handle multiple requests in one
endpoint class. This is the responsibility of the mMet hodEndpoi nt Mappi ng. Similar to the endpoint mapping
described above, this mapping determines which method is to be invoked for an incoming request message.

There ae two endpoint mappings that can direct requests to methods. the
Pay| oadRoot Annot at i onMet hodEndpoi nt Mappi ng and the SoapActi onAnnot at i onMet hodEndpoi nt Mappi ng,
both of which are very similar to their non-method counterparts described above.

The Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng USes the @ay! oadRoot annotation, with the I ocal Part
and nanespace elements, to mark methods with a particular qualified name. Whenever a message comes in
which has this qualified name for the payload root element, the method will be invoked. For an example, see
above.

Alternatively, the SoapAct i onAnnot at i onMet hodEndpoi nt Mappi ng USeS the @oapAct i on annotation to mark
methods with a particular SOAP Action. Whenever a message comes in which has this soAPAct i on header, the
method will be invoked.

5.4.4. Intercepting requests - the Endpoi nt I nt er cept or interface

The endpoint mapping mechanism has the notion of endpoint interceptors. These can be extremely useful when
you want to apply specific functionality to certain requests, for example, dealing with security-related SOAP

Spring-WS (1.0.4) 33

Creating a Web service with Spring-WS

headers, or the logging of request and response message.

Interceptors located in the endpoint mapping must implement the Endpoi nt I nt er cept or interface from the
org.springframework.ws.server package. This interface defines three methods, one that can be used for
handling the request message before the actual endpoint will be executed, one that can be used for handling a
normal response message, and one that can be used for handling fault messages, both of which will be called
after the endpoint is executed. These three methods should provide enough flexibility to do al kinds of pre- and
post-processing.

The handl eRequest (..) method on the interceptor returns a boolean value. You can use this method to
interrupt or continue the processing of the invocation chain. When this method returns tr ue, the endpoint
execution chain will continue, when it returns f al se, the MessageDi spat cher interprets this to mean that the
interceptor itself has taken care of things and does not continue executing the other interceptors and the actual
endpoint in the invocation chain. The handl eResponse(..) and handl eFaul t (. .) methods also have aboolean
return value. When these methods return f al se, the response will not be sent back to the client.

There are a number of standard Endpoi nt | nt er cept or implementations you can use in your Web service.
Additionally, there is the xwsSecuritylnterceptor, Wwhich is described in Section 7.2,

“XwsSecuritylnterceptor”.

5.4.4.1. Payl oadLoggi ngl nt er cept or and SoapEnvel opelLoggi ngl nt er cept or

When developing a Web service, it can be useful to log the incoming and outgoing XML messages. SWS
facilitates this with the Payl oadLoggi ngl nt erceptor and SoapEnvel opeLoggi ngl nter cept or classes. The
former logs just the payload of the message to the Commons Logging Log; the latter logs the entire SOAP
envelope, including SOAP headers. The following example shows you how to define them in an endpoint

mapping:

<beans>
<bean i d="endpoi nt Mappi ng"
cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot QNaneEndpoi nt Mappi ng" >
<property nanme="interceptors">

<list>
<ref bean="I| oggi nglnterceptor"/>
</list>

</ property>
<property nanme="mappi ngs">
<pr ops>
<prop key="{http://sanpl es}order Request" >get O der Endpoi nt </ pr op>
<prop key="{http://sanpl es}order">createO der Endpoi nt </ pr op>
</ props>
</ property>
</ bean>

<bean i d="I| oggi ngl nt ercept or"
cl ass="org. spri ngfranmewor k. ws. server. endpoi nt.interceptor. Payl oadLoggi ngl nt erceptor"/>
</ beans>

Both of these interceptors have two properties. 'logRequest’ and 'logResponse’, which can be set to f al se to
disable logging for either request or response messages.

5.4.4.2. Payl oadVal i dat i ngl nt er cept or

One of the benefits of using a contract-first development style is that we can use the schema to validate
incoming and outgoing XML messages. Spring-WS facilitates this with the Payl oadVval i dati ngl nt erceptor.
This interceptor requires a reference to one or more W3C XML or RELAX NG schemas, and can be set to
validate requests or responses, or both.

Spring-WS (1.0.4) 34

Creating a Web service with Spring-WS

Note

Note that request validation may sound like a good idea, but makes the resulting Web service very
strict. Usually, it is not really important whether the request validates, only if the endpoint can get
sufficient information to fullfill a request. Validating the response is a good idea, because the
endpoint should adhere to its schema. Remember Postel's Law: “Be conservative in what you do;
be libera in what you accept from others.”

Here is an example that uses the Payl oadVal i dati ngl nt ercept or; in this example, we use the schema in
/VEB- I NF/ orders.xsd to validate the response, but not the request. Note that the
Payl oadVal i dati ngl nt er cept or can aso accept multiple schemas using the schemas property.

<bean id="validatinglnterceptor"
cl ass="org. spri ngf ramewor k. ws. soap. server. endpoi nt. i nt ercept or. Payl oadVal i dati ngl nt er cept or">
<property name="schenma" val ue="/WEB-I| NF/ orders. xsd"/ >
<property nanme="val i dat eRequest" val ue="fal se"/>
<property nanme="val i dat eResponse" val ue="true"/>
</ bean>

5.4.4.3. payl oadTr ansf or m ngl nt er cept or

To transform the payload to another XML format, Spring Web Services offers the
Pay| oadTr ansf or mi ngl nt er cept or . This endpoint interceptor is based on XSLT stylesheets, and is especially
useful when supporting multiple versions of a Web service: you can transform the older message format to the
newer format. Here is an example to use the Pay| oadTr ansf or mi ngl nt er cept or :

<bean i d="transform ngl nterceptor"
cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. i nterceptor. Payl oadTr ansf or mi ngl nt ercept or ">
<property name="request Xslt" val ue="/\WEB- | NF/ ol dRequests. xslt"/>
<property nanme="request Xslt" val ue="/WEB- | NF/ ol dResponses. xslt"/>
</ bean>

We are simply transforming requests using /VEB- | NF/ ol dRequests. xslt, and response messages using
/| WEB- | NF/ ol dResponses. xs| t . Note that, since endpoint interceptors are registered at the endpoint mapping
level, you can simply create a endpoint mapping that applies to the "old style" messages, and add the
interceptor to that mapping. Hence, the transformation will apply only to these "old style" message.

5.5. Handling Exceptions

Spring-WS provides Endpoi nt Except i onResol ver s t0 ease the pain of unexpected exceptions occurring while
your message is being processed by an endpoint which matched the request. Endpoint exception resolvers
somewhat resemble the exception mappings that can be defined in the web application descriptor web. xm .
However, they provide a more flexible way to handle exceptions. They provide information about what
endpoint was invoked when the exception was thrown. Furthermore, a programmatic way of handling
exceptions gives you many more options for how to respond appropriately. Rather than expose the innards of
your application by giving an exception and stack trace, you can handle the exception any way you want, for
example by returning a SOAP fault with a specific fault code and string.

Endpoint exception resolvers are automatically picked up by the MessageDi spatcher, SO no explicit
configuration is necessary.

Besides implementing the Endpoi nt Except i onResol ver interface, which is only a matter of implementing the
resol veExcept i on(MessageCont ext, endpoi nt, Exception) method, you may also use one of the provided

Spring-WS (1.0.4) 35

Creating a Web service with Spring-WS

implementations. The simplest implementation is the Si npl eSoapExcept i onResol ver, which just creates a
SOAP 1.1 Server or SOAP 1.2 Receiver Fault, and uses the exception message as the fault string. The
Si npl eSoapExcept i onResol ver isthe default, but it can be overriden by explicitly adding another resolver.

5.5.1. SoapFaul t Mappi ngExcept i onResol ver

The SoapFaul t Mappi ngExcept i onResol ver IS amore sophisticated implementation. This resolver enables you
to take the class name of any exception that might be thrown and map it to a SOAP Fault, like so:

<beans>
<bean i d="excepti onResol ver"
cl ass="org. springfranmewor k. ws. soap. server. endpoi nt. SoapFaul t Mappi ngExcept i onResol ver ">
<property name="defaul t Fault" val ue="SERVER">
</ property>
<property nanme="excepti onMappi ngs" >
org. springframewor k. oxm Val i dati onFai | ur eExcepti on=CLI ENT, | nval i d r equest
</ property>
</ bean>
</ beans>

The key values and default endpoint use the format f aul t Code, faul t String, | ocal e, where only the fault
code isrequired. If the fault string is not set, it will default to the exception message. If the language is not set,
it will default to English. The above configuration will map exceptions of type Vval i dat i onFai | ur eExcepti on
to aclient-side SOAP Fault with afault string "1 nval i d request ", as can be seen in the following response:

<SOAP- ENV: Envel ope xml ns: SOAP- ENV="htt p: / / schemas. xnl soap. or g/ soap/ envel ope/ " >
<SCQAP- ENV: Body>
<SOAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Cl i ent </ f aul t code>
<faultstring>lnvalid request</faultstring>
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

If any other exception occurs, it will return the default fault: a server-side fault with the exception message as
fault string.

5.5.2. SoapFaul t Annot at i onExcept i onResol ver

Finally, it is also possible to annotate exception classes with the @oapFaul t annotation, to indicate the SOAP
Fault that should be returned whenever that exception is thrown. In order for these annotations to be picked up,
you need to add the SoapFaul t Annot at i onExcept i onResol ver t0 your application context. The elements of the
annotation include afault code enumeration, fault string or reason, and language. Here is an example exception:

package sanpl es

i nport org.springfranework. ws. soap. server. endpoi nt . annot at i on. Faul t Code
i mport org.springframework. ws. soap. server. endpoi nt. annot ati on. SoapFaul t ;

@soapFaul t (faul t Code = Faul t Code. SERVER)
public class M/Busi nessExcepti on extends Exception {

public MyCientException(String nessage) {
super (message) ;
}

Whenever the MyBusi nessExcept i on isthrown with the constructor string " cops! " during endpoint invocation,
it will result in the following response:

<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ ">

Spring-WS (1.0.4) 36

Creating a Web service with Spring-WS

<SOAP- ENV: Body>
<SOAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Ser ver </ f aul t code>
<faul tstring>QCops! </faultstring>
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body >
</ SOAP- ENV: Envel ope>

Spring-WS (1.0.4)

37

Chapter 6. Using Spring Web Services on the Client

6.1. Introduction

Spring-WS provides a client-side Web service API that alows for consistent, XML-driven access to Web
services. It also caters for the use of marshallers and unmarshallers so that your service tier code can deal
exclusively with Java objects.

The org.springframework.ws.client.core package provides the core functionality for using the client-side access
APl. It contains template classes that simplify the use of Web services, much like the core Spring
JdbcTenpl at e does for JIDBC. The design principle common to Spring template classes is to provide helper
methods to perform common operations, and for more sophisticated usage, delegate to user implemented
callback interfaces. The Web service template follows the same design. The classes offer various convenience
methods for the sending and receiving of XML messages, marshalling objects to XML before sending, and
allows for multiple transport options.

6.2. Using the client-side API

6.2.1. WebSer vi ceTenpl at e

The websServi ceTenpl at e iS the core class for client-side Web service access in Spring-WS. It contains
methods for sending Sour ce objects, and receiving response messages as either Sour ce or Resul t . Additionally,
it can marshal objects to XML before sending them across a transport, and unmarshal any response XML into
an object again.

6.2.1.1. URIs and Transports

The webServi ceTenpl ate class uses an URI as the message destination. You can either set a defaultUri
property on the template itself, or supply an URI explicitly when calling a method on the template. The URI
will be resolved into a webSer vi ceMessageSender , Which is responsible for sending the XML message across a
transport layer. You can set one or more message senders using the messageSender or messageSenders
properties of the webSer vi ceTenpl at e class.

There are two implementations of the webSer vi ceMessageSender interface for sending messages via HTTP.
The default implementation is the Ht t pUr | Connect i onMessageSender, which uses the facilities provided by
Java itsdlf. The aternative is the CormonsH: t pMessageSender , which uses the Jakarta Commons HttpClient.
Use the latter if you need more advanced and easy-to-use functionality (such as authentication, HTTP
connection pooling, and so forth).

6.2.1.2. Message factories

In addition to a message sender, the webSer vi ceTenpl at e requires a Web service message factory. There are
two message factories for SOAP: Saaj SoapMessageFact ory and Axi onSoapMessageFact ory. If no message
factory is specified (via the 'messageFact ory' property), Spring-WS will use the Saaj SoapMessageFact ory by
defaullt.

6.2.2. Sending and receiving a WbSer vi ceMessage

Spring-WS (1.0.4) 38

Using Spring Web Services on the Client

The webSer vi ceTenpl at e contains many convenience methods to send and receive web service messages.
There are methods that accept and return a Source and those that return a Resul t . Additionally, there are
methods which marshal and unmarshal objectsto XML. Here is an example that sends a simple XML message
to aWeb service.

i mport java.io. StringReader;
i mport javax.xm .transform stream StreanResul t;
i nport javax.xm .transform stream StreanfSour ce;

i mport org.springframework. ws. WebSer vi ceMessageFactory;
i mport org.springframework.ws. client.core. WbServi ceTenpl at e;
i nport org.springfranework.ws.transport.WbServi ceMessageSender ;

public class WbServiceCdient {
private static final String MESSAGE = "<nessage xmi ns=\"http://tenpuri.org\">Hell o Web Service Wrl d</ nessac
private final WebServi ceTenpl ate webServi ceTenpl ate = new WebServi ceTenpl ate();

public void setDefaul tUri(String defaul tUri) {
webSer vi ceTenpl at e. set Defaul t Uri (defaul t Uri);

}

/'l send to the configured default URI

public void sinpleSendAndRecei ve() {
St reanSour ce source = new StreanSource(new StringReader (MESSAGE)) ;
StreanResult result = new StreanResul t (System out);
webSer vi ceTenpl at e. sendSour ceAndRecei veToResul t (source, result);

}

/1 send to an explicit URI
public void custonSendAndRecei ve() {
St reanBSour ce source = new StreanSource(new StringReader (MESSACE)) ;
StreanResult result = new StreanResult (System out);
webSer vi ceTenpl at e. sendSour ceAndRecei veToResul t ("http://1 ocal host: 8080/ Anot her WebSer vi ce", source, resul

<beans xm ns="http://ww. spri ngfranmework. or g/ schema/ beans" >

<bean i d="webServiceCient" class="WbServiceCient">
<property name="defaul tUri" value="http://I|ocal host: 8080/ WebServi ce"/>
</ bean>

</ beans>

The above example uses the WwebSer vi ceTenpl at e to send a hello world message to the web service located at
http://1 ocal host: 8080/ WebServi ce (in the case of the si npl eSendAndRecei ve() method), and writes the
result to the console. The webSer vi ceTenpl at e is injected with the default URI, which is used because no URI
was supplied explicitly in the Java code.

Please note that the webServi ceTenpl ate class is threadsafe once configured (assuming that all of it's
dependencies are threadsafe too, which is the case for al of the dependencies that ship with Spring-WS), and so
multiple objects can use the same shared WebSer vi ceTenpl at e instance if so desired. The webSer vi ceTenpl at e
exposes a zero argument constructor and messageFactory/messageSender bean properties which can be used
for constructing the instance (using a Spring container or plain Java code). Alternatively, consider deriving
from Spring-WS's webSer vi ceGat ewaySupport convenience base class, which exposes convenient bean
properties to enable easy configuration. (You do not have to extend this base class... it is provided as a
convenience class only.)

6.2.3. Sending and receiving POJOs - marshalling and unmarshalling

Spring-WS (1.0.4) 39

Using Spring Web Services on the Client

In order to facilitate the sending of plain Java objects, the webSer vi ceTenpl at e has a number of send(. .)
methods that take an ject as an argument for a message's data content. The method
mar shal SendAndRecei ve(..) inthe webServi ceTenpl at e class delegates the conversion of the request object
to XML to awmarshal | er, and the conversion of the response XML to an object to an unnar shal | er . (For more
information about marshalling and unmarshaller, refer to Chapter 8, Marshalling XML using O/X Mappers.) By
using the marshallers, your application code can focus on the business object that is being sent or received and
not be concerned with the details of how it is represented as XML. In order to use the marshalling functionality,
you have to set a marshaler and unmarshaller with the marshaler/unmarshaller properties of the
VWebSer vi ceTenpl at e class.

6.2.4. WebServi ceMessageCal | back

To accommodate the setting of SOAP headers and other settings on the message, the
WebSer vi ceMessageCal | back interface gives you access to the message after it has been created, but before it
is sent. The example below demonstrates how to set the SOAP Action header on a message that is created by
marshalling an object.

public void marshal Wt hSoapAct i onHeader (MyObj ect 0) {
webSer vi ceTenpl at e. nar shal SendAndRecei ve(o, new WebSer vi ceMessageCal | back() {

public void dol nMessage(WbServi ceMessage nessage) {
((SoapMessage) message) . set SoapAction("http://tenpuri.org/Action");
}

1)

6.2.5. WebServi ceMessageExt ract or

The webSer vi ceMessageExt ract or interface is a low-level callback interface that alows you to have full
control over the process to extract an tj ect from a received WebSer vi ceMessage. The WebSer vi ceTenpl at e
will invoke the extractData(..) method on a supplied WbSer vi ceMessageExt ract or while the underlying
connection to the serving resource is dill open. The following example illustrates the
VebSer vi ceMessageExt ract or in action;

public void marshal Wt hSoapActi onHeader (final Source s) {
final Transfornmer transfornmer = transfornerFactory. newlransfornmer();
webSer vi ceTenpl at e. sendAndRecei ve(new WebSer vi ceMessageCal | back() {

public void dol nMessage(WebServi ceMessage nessage) {
transformer.transfornm(s, nessage. getPayl oadResul t());
}, new WebServi ceMessageExtractor() {

public nject extractDat a(WebServi ceMessage nmessage) throws | OException

/1l do your own transforms with nessage. get Payl oadResul t ()
/1 or nessage. get Payl oadSour ce()

55

Spring-WS (1.0.4) 40

Chapter 7. Securing your Web services with
Spring-WS

7.1. Introduction

This chapter explains how to add WS-Security aspects to your Web services. We will focus on the three
different areas of WS-Security, namely:

Authentication. Thisisthe process of determining whether a principal iswho they claim to be. In this context,
a "principal" generally means a user, device or some other system which can perform an action in your
application.

Digital signatures. The digital signature of a message is a piece of information based on both the document
and the signer's private key. It is created through the use of a hash function and a private signing function
(encrypting with the signer's private key).

Encryption and Decryption. Encryption is the process of transforming data into a form that is impossible to
read without the appropriate key. It is mainly used to keep information hidden from anyone for whom it is not
intended. Decryption is the reverse of encryption; it is the process of transforming of encrypted data back into
an readable form.

All of these three areas are implemented using the XwsSecurityl nterceptor, which we will describe in
Section 7.2, “XwsSecurityl nterceptor”.

Note

Note that WS-Security (especially encryption and signing) requires substantial amounts of
memory, and will also decrease performance. If performance is important to you, you might want
to consider not using WS-Security.

7.2. XwsSecurityl nterceptor

The xwsSecuritylnterceptor iS an Endpointlnterceptor (See Section 5.4.4, “Intercepting requests - the
Endpoi nt I nt ercept or interface”) that is based on SUN's XML and Web Services Security package (XWSS).
This WS-Security implementation is part of the Java Web Services Devel oper Pack (Java WSDP).

Like any other endpoint interceptor, it is defined in the endpoint mapping (see Section 5.4, “Endpoint
mappings’). This means that you can be selective about adding WS-Security support: some endpoint mappings
require it, while others do not.

The xwsSecurityl nterceptor requires a security policy file to operate. This XML file tells the interceptor
what security aspects to require from incoming SOAP messages, and what aspects to add to outgoing messages.
The basic format of the policy file will be explained in the following sections, but you can find a more in-depth
tutoria here. You can set the policy with the pol i cyConfi gurati on property, which requires a Spring resource.
The policy file can contain multiple elements, e.g. require a username token on incoming messages, and sign all
outgoing messages. It contains a Securi t yConf i gur ati on element asroot (not a JAXRPCSecuri ty €lement).

Additionally, the security interceptor requires one or more Cal | backHandl er S to operate. These handlers are
used to retrieve certificates, private keys, validate user credentials, etc. Spring-WS offers handlers for most

Spring-WS (1.0.4) 41

http://java.sun.com/webservices/
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp564887

Securing your Web services with Spring-WS

common security concerns, e.g. authenticating against a Acegi authentication manager, signing outgoing
messages based on a X509 certificate. The following sections will indicate what callback handler to use for
which security concern. You can set the callback handlers using the cal | backHandl er or cal | backHandl er s

property.

Hereis an example that shows how to wire the xwsSecuri t yl nt er cept or Up:

<beans>
<bean i d="wsSecuritylnterceptor”
cl ass="org. springframewor k. ws. soap. security.xwss. XwsSecuritylnterceptor">
<property name="policyConfiguration" val ue="cl asspath: securityPolicy.xm"/>
<property name="cal | backHandl ers" >
<list>
<ref bean="certificateHandl er"/>
<ref bean="authenticati onHandl er"/>
</list>
</ property>
</ bean>

</ beans>

This interceptor is configured using the securityPolicy.xn file on the classpath. It uses two callback
handlers which are defined further on in thefile.

7.3. Keystores

For most cryptographic operations, you will use standard j ava. security. KeyStore objects. This includes
certificate verification, message signing, signature verification, and encryption, but excludes username and
time-stamp verification. This section aims to give you some background knowledge on keystores, and the Java
tools that you can use to store keys and certificates in a keystore file. This information is mostly not related to
Spring-WS, but to the general cryptographic features of Java.

Thejava. security. KeySt ore class represents a storage facility for cryptographic keys and certificates. It can
contain three different sort of elements:

Private Keys. These keys are used for self-authentication. The private key is accompanied by certificate chain
for the corresponding public key. Within the field of WS-Security, this accounts to message signing and
message decryption.

Symmetric Keys. Symmetric (or secret) keys are used for message encryption and decryption as well. The
difference being that both sides (sender and recipient) share the same, secret key.

Trusted certificates. These X509 certificates are called a trusted certificate because the keystore owner trusts
that the public key in the certificates indeed belong to the owner of the certificate. Within WS-Security, these
certificates are used for certificate validation, signature verification, and encryption.

7.3.1. KeyTool

Supplied with your Java Virtual Machine is the keytool program, akey and certificate management utility. You
can use this tool to create new keystores, add new private keys and certificates to them, etc. It is beyond the
scope of this document to provide afull reference of the keytool command, but you can find a reference here,
or by giving the command keyt ool - hel p on the command line.

7.3.2. KeyStoreFactoryBean

Spring-WS (1.0.4) 42

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html

Securing your Web services with Spring-WS

To easily load a keystore using Spring configuration, you can use the Key St or eFact or yBean. It has a resource
location property, which you can set to point to the path of the keystore to load. A password may be given to
check the integrity of the keystore data. If a password is not given, integrity checking is not performed.

<bean i d="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">

<property name="password" val ue="password"/>

<property name="l|ocati on" val ue="cl asspat h: or g/ spri ngf ranewor k/ ws/ soap/ security/ xwss/test-keystore.jks"/>
</ bean>

Caution

If you don't specify the location property, a new, empty keystore will be created, which is most
likely not what you want.

7.3.3. KeyStoreCallbackHandler

To use the keystores within a xwsSecuri t yl nt er cept or , you Will need to define a Key St or eCal | backHandl er .
This callback has three properties with type keystore: (keySt ore, t rust Store, and symmet ri ¢St or e). The exact
stores used by the handler depend on the cryptographic operations that are to be performed by this handler. For
private key operation, the keystore is used, for symmetric key operations the symetricStore, and for
determining trust relationships, thet r ust St or e. The following table indicates this:

Cryptographic operation Keystore used

Certificate validation first thekeyStore, thenthetrust Store
Decryption based on private key keySt ore

Decryption based on symmetric key symmetricStore

Encryption based on public key certificate trustStore

Encryption based on symmetric key symmetricStore

Signing keySt ore

Signature verification trustStore

Additionally, the KeySt or eCal | backHandl er has a pri vat ekeyPassword property, which should be set to
unlock the private key(s) contained in the keySt or e.

If the symmetricStore isnot set, it will default to the keySt or e. If the key or trust store is not set, the callback
handler will use the standard Java mechanism to load or create it. Refer to the JavaDoc of the
KeySt or eCal | backHandl er to know how this mechanism works.

For instance, if you want to use the KeySt or eCal | backHandl er to validate incoming certificates or signatures,
you would use atrust store, like so:

<beans>
<bean i d="keySt oreHandl er" cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. KeySt or eCal | backHandl er
<property name="trustStore" ref="trustStore"/>
</ bean>

<bean id="trustStore" class="org.springfranework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="l|ocati on" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>

</ bean>

Spring-WS (1.0.4) 43

Securing your Web services with Spring-WS

</ beans>

If you want to use it to decrypt incoming certificates or sign outgoing messages, you would use akey store, like
o)

<beans>
<bean i d="keyStoreHandl er" cl ass="org.springframework.ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er
<property name="keyStore" ref="keyStore"/>
<property name="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean i d="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="| ocati on" val ue="cl asspat h: keystore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

The following sections will indicate where the Key St or eCal | backHandl er can be used, and which properties to
set for particular cryptographic operations.

7.4. Authentication

As stated in the introduction, authentication is the task of determining whether a principal is who they claim to
be. Within WS-Security, authentication can take two forms: using a username and password token (using either
aplain text password or a password digest), or using a X509 certificate.

7.4.1. Plain Text Username Authentication

The simplest form of username authentication uses plain text passwords. In this scenario, the SOAP message
will contain a User naneToken element, which itsaelf contains a User name element and a Password eement
which contains the plain text password. Plain text authentication can be compared to the Basic Authentication
provided by HTTP servers.

Warning

Note that plain text passwords are not very secure. Therefore, you should aways add additional
security measures to your transport layer if you are using them (using HTTPS instead of plain
HTTP, for instance).

To require that every incoming message contains a User naneToken with a plain text password, the security
policy file should contain a Requi r eUser naneToken element, with the passwor dDi gest Requi r ed attribute set to
fal se. You can find areference of possible child elements here.

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi r eUser nameToken passwor dDi gest Requi red="f al se" nonceRequi red="f al se"/>

</ xwss: SecurityConfi guration>

If the username token is not present, the xwsSecuri t yl nt er cept or Will return a SOAP Fault to the sender. If it
is present, it will fire a Passwor dval i dati onCal | back with a Pl ai nText Passwor dRequest tO the registered
handlers. Within Spring-WS, there are three classes which handle this particul ar callback.

Spring-WS (1.0.4) 44

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

Securing your Web services with Spring-WS

7.4.1.1. SimplePasswordValidationCallbackHandler

The simplest password validation handler is the Si npl ePasswor dVal i dati onCal | backHandl er. This handler
validates passwords against an in-memory Properti es object, which you can specify using the user s property,
like so:

<bean i d="passwor dVal i dati onHandl er"
cl ass="org. spri ngframewor k. ws. soap. security.xwss. cal | back. Si npl ePasswor dVal i dat i onCal | backHandl er ">
<property name="users">
<pr ops>
<prop key="Bert">Erni e</prop>
</ props>
</ property>
</ bean>

In this case, we are only allowing the user "Bert" to log in using the password "Ernie".

7.4.1.2. AcegiPlainTextPasswordValidationCallbackHandler

The Acegi Pl ai nText Passwor dVal i dat i onCal | backHandl er uses the excellent Aceai Security Framework to
authenticate users. It is beyond the scope of this document to describe Acegi, but suffice it to say that Acegi isa
full-fledged security framework. Y ou can read more about Acegi in the Aceqgi reference documentation.

The Acegi Pl ai nText Passwor dVal i dati onCal | backHandl er requires an Acegi Aut henti cati onManager to
operate. It uses this manager to authenticate against a User nanePasswor dAut hent i cat i onToken that it creates.
If authentication is successful, the token is stored in the SecurityContextHolder. You can set the
authentication manager using the aut hent i cat i onManager property:

<beans>
<bean i d="acegi Handl er"
cl ass="org. spri ngfranmewor k. ws. soap. security.xwss. cal | back. acegi . Acegi Pl ai nText Passwor dVal i dati onCal | backHe
<property name="aut henticati onManager" ref="authenticati onManager"/>
</ bean>

<bean i d="aut henti cati onManager" cl ass="org. acegi security. providers. Provi der Manager ">
<property name="providers">
<bean cl ass="org. acegi security. provi ders. dao. DaoAut henti cati onProvi der">
<property name="userDetail sService" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

7.4.1.3. JaasPlainTextPasswordValidationCallbackHandler

The JaasPl ai nText Passwor dVal i dati onCal | backHandl er is based on the standard Java Authentication and
Authorization Service. It is beyond the scope of this document to provide a full introduction into JAAS, but
thereisagood tutorial available.

The JaasPl ai nText Passwor dVal i dat i onCal | backHandl er requires only a | ogi nCont ext Nane to operate. It
creates a new JAAS Logi nContext using this name, and handles the standard JAAS NanecCal | back and
Passwor dCal | back using the username and password provided in the SOAP message. This means that this
callback handler integrates with any JAAS Logi nModul e that fires these callbacks during the | ogi n() phase,
which is standard behavior.

Spring-WS (1.0.4) 45

http://acegisecurity.org/
http://acegisecurity.org/docbook/acegi.html
http://java.sun.com/products/jaas/
http://java.sun.com/products/jaas/
http://www.javaworld.com/javaworld/jw-09-2002/jw-0913-jaas.html

Securing your Web services with Spring-WS

You can wire up aJaasPl ai nText Passwor dVal i dat i onCal | backHandl er asfollows:

<bean id="jaasVal i dati onHandl er"
cl ass="org. springframewor k. ws. soap. security. xwss. cal | back. j aas. JaasPl ai nText Passwor dVal i dati onCal | backHandl ¢
<property nanme="| ogi nCont ext Nane" val ue="M/Logi nModul e" />

</ bean>

In this case, the callback handler uses the Logi nCont ext named "MyLoginModule". This module should be
defined inyour j aas. confi g file, as explained in the abovementioned tutorial.

7.4.2. Digest Username Authentication

When using password digests, the SOAP message also contains a User naneToken €lement, which itself
contains a User nane element and a Passwor d element. The difference is that the password is not sent as plain
text, but as a digest. The recipient compares this digest to the digest he calculated from the known password of
the user, and if they are the same, the user is authenticated. It can be compared to the Digest Authentication
provided by HTTP servers.

To require that every incoming message contains a User naneToken €lement with a password digest, the security
policy file should contain a Requi r eUser naneToken element, with the passwor dDi gest Requi r ed attribute set to
true. Additionally, the nonceRequired should be set to true: You can find a reference of possible child
elements here.

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi r eUser nameToken passwor dDi gest Requi red="t rue" nonceRequired="true"/>

</ xwss: SecurityConfi guration>

If the username token is not present, the xwsSecuri t yl nt er cept or Will return a SOAP Fault to the sender. If it
is present, it will fire a PasswordvalidationCal | back with a Di gest Passwor dRequest t0 the registered
handlers. Within Spring-WS, there are two classes which handle this particular callback.

7.4.2.1. SimplePasswordValidationCallbackHandler

The si npl ePasswor dval i dat i onCal | backHandl er can handle both plain text passwords as well as password
digests. It isdescribed in Section 7.4.1.1, “ SimplePasswordV aidationCallbackHandler” .

7.4.2.2. AcegiDigestPasswordValidationCallbackHandler

The Acegi Pl ai nText Passwor dVal i dati onCal | backHandl er requires an Acegi User Det ai | Ser vi ce tO operate.
It uses this service to retrieve the password of the user specified in the token. The digest of the password
contained in this details object is then compared with the digest in the message. If they are equal, the user has
successfully authenticated, and a UsernanePasswordAut henticationToken is stored in the
Securi t yCont ext Hol der . You can set the service using the user Det ai | sSer vi ce. Additionally, you can set a
user Cache property, to cache loaded user details.

<beans>
<bean cl ass="org. springframewor k. ws. soap. security. xwss. cal | back. acegi . Acegi Di gest Passwor dVal i dat i onCal | back}
<property nanme="userDetail sServi ce" ref="userDetail sService"/>
</ bean>

<bean i d="userDetai |l sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

Spring-WS (1.0.4) 46

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

Securing your Web services with Spring-WS

7.4.3. Certificate Authentication

A more secure way of authentication uses X509 certificates. In this scenerario, the SOAP message contains a
Bi nar ySecuri t yToken, which contains a Base 64-encoded version of a X509 certificate. The recipient is used
by the recipient to authenticate. The certificate stored in the message is also used to sign the message (see
Section 7.5.1, “Verifying Signatures”).

To make sure that all incoming SOAP messages carry a Bi nar ySecur i t yToken, the security policy file should
contain a Requi r eSi gnat ur e element. This element can further carry other elements, which will be covered in
Section 7.5.1, “Verifying Signatures”. Y ou can find areference of possible child elements here.

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi reSi gnature requireTi mestanp="fal se">

</ xwss: SecurityConfi guration>

When a message arrives that carries no certificate, the xwsSecuri tyl nt ercept or Will return a SOAP Fault to
the sender. If it is present, it will fire a CertificateValidationCal |l back. There are three handlers within
Spring-WS which handle this callback for authentication purposes.

Note

In most cases, certificate authentication should be preceded by certificate validation, since you
only want to authenticate against valid certificates. Invalid certificates such as certificates for
which the expiration date has passed, or which are not in your store of trusted certificates, should
beignored.

In Spring-WS terms, this means that the Acegi CertificateValidationCal |l backHandl er Or
JaasCertificateValidationCal | backHandl er should be preceded by
KeySt oreCal | backHandl er. This can be accomplished by setting the order of the
cal | backHandl er s property in the configuration of the xwsSecuri tyl nt ercept or:

<bean i d="wsSecuritylnterceptor"”
cl ass="org. spri ngframewor k. ws. soap. security.xwss. XwsSecurityl nterceptor">
<property name="policyConfiguration" val ue="cl asspath: securityPolicy.xm"/>
<property name="cal | backHandl ers" >
<list>
<ref bean="keyStoreHandl er"/>
<ref bean="acegi Handl er"/>
</list>
</ property>
</ bean>

Using this setup, the interceptor will first determine if the certificate in the message is valid using
the keystore, and then authenticate against it.

7.4.3.1. KeyStoreCallbackHandler

The KeySt or eCal | backHandl er uses a standard Java keystore to validate certificates. This certificate validation
process consists of the following steps:

1. First, the handler will check whether the certificateisin the private keySt ore. If it is, it isvalid.

2. If the certificate is not in the private keystore, the handler will check whether the the current date and time

Spring-WS (1.0.4) 47

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

Securing your Web services with Spring-WS

are within the validity period given in the certificate. If they are not, the certificate is invalid; if it is, it will
continue with the final step.

3. Finaly, acertification path for the certificate is created. This basically means that the handler will determine
whether the certificate has been issued by any of the certificate authorities in the trustStore. If a
certification path can be built successfully, the certificate is valid. Otherwise, the certificate is not.

To use the KeySt or eCal | backHandl er for certificate validation purposes, you will most likely set only the
trust St or e property:

<beans>
<bean i d="keySt oreHandl er" cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. KeySt or eCal | backHandl er
<property name="trustStore" ref="trustStore"/>
</ bean>

<bean i d="trustStore" class="org.springfranework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="l|ocati on" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

Using this setup, the certificate that is to be validated must either be in the trust store itself, or the trust store
must contain a certificate authority that issued the certificate.

7.4.3.2. AcegiCertificateValidationCallbackHandler

The Acegi CertificateVal i dati onCal | backHandl er requires an Acegi Aut henti cati onManager to operate. It
uses this manager to authenticate against a X509Aut henti cati onToken that it creates. The configured
authentication manager is expected to supply a provider which can handle this token (usually an instance of
X509Aut hent i cationProvider). |If authentication is succesful, the token is stored in the
Securi t yCont ext Hol der . You can set the authentication manager using the aut hent i cat i onManager property:

<beans>
<bean i d="acegi Certifi cat eHandl er"
cl ass="org. springframewor k. ws. soap. security. xwss. cal | back. acegi . Acegi CertificateValidati onCall backHandl e
<property name="aut henticati onManager" ref="authenti cati onManager"/>
</ bean>

<bean i d="aut henti cati onManager"
cl ass="org. acegi security. providers. Provi der Manager" >
<property nanme="providers">
<bean cl ass="org. acegi security. providers.x509. X509Aut hent i cati onPr ovi der ">
<property nanme="x509Aut horiti esPopul at or">
<bean cl ass="org. acegi security. providers.x509. popul at or. DaoX509Aut hori ti esPopul at or" >
<property name="user Detail sService" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

<bean i d="userDetai |l sServi ce" cl ass="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

In this case, we are using a custom user details service to obtain authentication details based on the certificate.
Refer to the Aceqi reference documentation for more information about authentication against X509
certificates.

7.4.3.3. JaasCertificateValidationCallbackHandler

Spring-WS (1.0.4) 48

http://acegisecurity.org/docbook/acegi.html

Securing your Web services with Spring-WS

The JaasCertificateVval i dationCal | backHandl er requires al ogi nCont ext Nare t0 operate. It creates a new
JAAS Logi nCont ext using this name and with the x500pri nci pal of the certificate. This means that this
callback handler integrates with any JAAS Logi nModul e that handles X500 principals.

You canwireup aJaasCertificat eval i dati onCal | backHandl er asfollows:

<bean i d="j aasVal i dati onHandl er"
cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. j aas. JaasCertificateValidationCal |l backHandl er">
<property name="I| ogi nCont ext Nane" >MyLogi nModul e</ pr operty>

</ bean>

In this case, the callback handler uses the Logi nCont ext hamed "MyLoginModule'. This module should be
defined in your j aas. confi g file, and should be able to authenticate against X500 principals.

7.5. Digital Signatures

The digital signature of a messageis a piece of information based on both the document and the signer's private
key. There are two main tasks related to signatures in WS-Security: verifying signatures and signing messages.

7.5.1. Verifying Signatures

Just like certificate-based authentication, a signed message contains a Bi nar ySecur i t yToken, which contains
the certificate used to sign the message. Additionally, it contains a Si gned! nf o block, which indicates what part
of the message was signed.

To make sure that al incoming SOAP messages carry a Bi nar ySecur i t yToken, the security policy file should
contain a Requi reSi gnature element. It can also contain a Si gnat ur eTar get element, which specifies the
target message part which was expected to be signed, and various other subelements. You can also define the
private key dias to use, whether to use a symmetric instead of a private key, and many other properties. You
can find areference of possible child elements here.

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: RequireSi gnature requireTi mnestanp="fal se"/>
</ xwss: SecurityConfigurati on>

If the signature is not present, the xwsSecurityl nterceptor Will return a SOAP Fault to the sender. If it is
present, it will fire asi gnat ureVeri fi cati onkeyCal | back to the registered handlers. Within Spring-WS, there
areisone class which handles this particular callback: the Key St or eCal | backHandl er .

7.5.1.1. KeyStoreCallbackHandler

As described in Section 7.3.3, “KeyStoreCallbackHandler”, the KeyStoreCallbackHandler UusSes a
java. security. KeyStore for handling various cryptographic calbacks, including signature verification. For
signature verification, the handler usesthet r ust St or e property:

<beans>
<bean i d="keySt oreHandl er" cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. KeySt or eCal | backHandl er
<property name="trustStore" ref="trustStore"/>
</ bean>

<bean i d="trustStore" class="org.springfranework.ws. soap. security.support.KeyStoreFactoryBean">
<property name="l|ocati on" val ue="cl asspat h: org/ spri ngf ranewor k/ ws/ soap/ security/ xwss/test-truststore.jks
<property name="password" val ue="changeit"/>

Spring-WS (1.0.4) 49

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

Securing your Web services with Spring-WS

</ bean>
</ beans>

7.5.2. Sighing Messages

When signing a message, the XwsSecuri tyl nt er cept or adds the Bi nar ySecuri t yToken to the message, and a
Si gned! nf o block, which indicates what part of the message was signed.

To sign all outgoing SOAP messages, the security policy file should contain a si gn element. It can also contain
a Si gnat ureTar get €lement, which specifies the target message part which was expected to be signed, and
various other subelements. Y ou can also define the private key alias to use, whether to use a symmetric instead
of aprivate key, and many other properties. Y ou can find areference of possible child elements here.

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Si gn incl udeTi nest anp="f al se" />
</ xwss: SecurityConfiguration>

The xwsSecuritylnterceptor Will fire a SignaturekeyCallback to the registered handlers. Within
Spring-WS, there are is one class which handles this particular callback: the KeySt or eCal | backHandl er .

7.5.2.1. KeyStoreCallbackHandler

As described in Section 7.3.3, “KeyStoreCallbackHandler”, the KeyStorecCallbackHandler uses a
java.security. KeyStore for handling various cryptographic callbacks, including signing messages. For
adding signatures, the handler uses the key St or e property. Additionally, you must set the pri vat eKeyPasswor d
property to unlock the private key used for signing.

<beans>
<bean i d="keyStoreHandl er" cl ass="org.springframework.ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er
<property nanme="keyStore" ref="keyStore"/>
<property nanme="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean i d="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="l| ocati on" val ue="cl asspat h: keystore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

7.6. Encryption and Decryption

When encrypting, the message is transformed into a form that can only be read with the appropriate key. The
message can be decrypted to reveal the original, readable message.

7.6.1. Decryption

To decrypt incoming SOAP messages, the security policy file should contain a Requi reEncrypti on element.
This element can further carry aEncrypti onTar get element which indicates which part of the message should
be encrypted, and a Ssymmet ri ckey to indicate that a shared secret instead of the regular private key should be
used to decrypt the message. Y ou can read a description of the other elements here.

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">

Spring-WS (1.0.4) 50

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565497
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

Securing your Web services with Spring-WS

<xwss: Requi reEncryption />
</ xwss: SecurityConfiguration>

If an incoming message is not encrypted, the XwsSecuri tyl nt er cept or Will return a SOAP Fault to the sender.
If it ispresent, it will fire aDecrypti onKeyCal | back to the registered handlers. Within Spring-WS, there is one
class which handled this particular callback: the Key St or eCal | backHandl er .

7.6.1.1. KeyStoreCallbackHandler

As described in Section 7.3.3, "KeyStoreCallbackHandler”, the KeyStoreCallbackHandl er uses a
java. security. KeyStore for handling various cryptographic callbacks, including decryption. For decryption,
the handler uses the key st or e property. Additionally, you must set the pri vat eKeyPasswor d property to unlock
the private key used for decryption. For decryption based on symmetric keys, it will usethe symmetricStore.

<beans>
<bean i d="keySt oreHandl er" cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. KeySt or eCal | backHandl er
<property name="keyStore" ref="keyStore"/>
<property nanme="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean i d="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="|ocati on" val ue="cl asspat h: keystore.jks"/>
<property nanme="password" val ue="changeit"/>
</ bean>
</ beans>

7.6.2. Encryption

To encrypt outgoing SOAP messages, the security policy file should contain a Encrypt element. This element
can further carry aEncrypti onTar get element which indicates which part of the message should be encrypted,
and a symmet ri ckey to indicate that a shared secret instead of the regular private key should be used to decrypt
the message. Y ou can read a description of the other elements here.

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Encrypt />
</ xwss: SecurityConfigurati on>

The XwsSecuritylnterceptor Will fire a EncryptionKeyCal | back to the registered handlers in order to
retrieve the encryption information. Within Spring-WS, there is one class which handled this particular
callback: the KeySt or eCal | backHandl er

7.6.2.1. KeyStoreCallbackHandler

As described in Section 7.3.3, “KeyStoreCallbackHandler”, the KeyStorecCallbackHandler uses a
java.security. KeyStore for handling various cryptographic callbacks, including encryption. For encryption
based on public keys, the handler uses the trust St or e property. For encryption based on symmetric keys, it
will usethesymetricStore.

<beans>
<bean i d="keyStoreHandl er" cl ass="org.springframework.ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er
<property name="trustStore" ref="trustStore"/>
</ bean>

<bean id="trustStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="|ocati on" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>

Spring-WS (1.0.4) 51

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

Securing your Web services with Spring-WS

</ bean>
</ beans>

Spring-WS (1.0.4)

52

Chapter 8. Marshalling XML using O/X Mappers

8.1. Introduction

In this chapter, we will describe Spring's Object/ XML Mapping support. Object/ XML Mapping, or O/X
mapping for short, isthe act of converting an XML document to and from an object. This conversion processis
also known as XML Marshalling, or XML Serialization. This chapter uses these terms interchangeably.

Within the field of O/X mapping, a marshaller is responsible for serializing an object (graph) to XML. In
similar fashion, an unmarshaller deserializes the XML to an object graph. This XML can take the form of a
DOM document, an input or output stream, or a SAX handler.

Some of the benefits of using Spring for your O/X mapping needs are:

Ease of configuration. Spring's bean factory makes it easy to configure marshallers, without needing to
construct JAXB context, JiBX binding factories, etc. The marshallers can be configured as any other bean in
your application context.

Consistent Interfaces. Spring's O/X mapping operates through two global interfaces. the marshal | er and
Unmar shal | er interface. These abstractions allow you to switch O/X mapping frameworks with relative ease,
with little or no changes required on the classes that do the marshalling. This approach has the additional
benefit of making it possible to do XML marshalling with a mix-and-match approach (e.g. some marshalling
performed using JAXB, other using XMLBeans) in a non-intrusive fashion, leveraging the strength of each
technology.

Consistent Exception Hierarchy. Spring provides a conversion from exceptions from the underlying O/X
mapping tool to its own exception hierarchy with the Xxm Mappi ngExcept i on as the root exception. As can be
expected, these runtime exceptions wrap the original exception so no information islost.

8.2. Marshaller and Unmarshaller

As stated in the introduction, a marshaller serializes an object to XML, and an unmarshaller deserializes XML
stream to an object. In this section, we will describe the two Spring interfaces used for this purpose.

8.2.1. Marshaller

Spring abstracts all marshalling operations behind the or g. spri ngf r amewor k. oxm Mar shal | er interface, the
main methods of which is listed below.

public interface Marshaller {

] **

* Marshal s the object graph with the given root into the provided Result.
*/
voi d marshal (Cbj ect graph, Result result)
t hrows Xm Mappi ngExcepti on, | OExcepti on;
}

The warshaller interface has one man method, which marshals the given object to a given
javax.xm .transform Resul t. Result is a tagging interface that basically represents an XML output
abstraction: concrete implementations wrap various XML representations, as indicated in the table below.

Spring-WS (1.0.4) 53

Marshalling XML using O/X Mappers

javax. xm . transform Resul t implementation Wraps XML representation

javax. xm . transf orm dom DOVResul t or g. w3c. dom Node

javax. xm . transform sax. SAXResul t org. xm . sax. Cont ent Handl er

javax. xm .transform stream StreanResul t java.io.File, java.io. Qut put Stream or

Note

java.io. Witer

Although the marshal method accepts a plain object as its first parameter, most marshal | er
implementations cannot handle arbitrary objects. Instead, an object class must be mapped in a
mapping file, registered with the marshaller, or have a common base class. Refer to the further
sectionsin this chapter to determine how your O/X technology of choice managesthis.

8.2.2. Unmarshaller

Similar to the Mar shal | er, thereisthe or g. spri ngf r anewor k. oxm Unnar shal | er interface.

public interface Unmarshaller {

/

* %

* Unmarshal s the given provided Source into an object graph.

*/

Obj ect unnar shal (Source source)

}

t hrows Xm Mappi ngExcepti on,

| OExcept i on;

This interface also has one method, which reads from the given j avax. xm . t r ansf or m Sour ce (an XML input
abstraction), and returns the object read. As with Result, Source is a tagging interface that has three concrete
implementations. Each wraps a different XML representation, as indicated in the table below.

j avax.
j avax.

j avax.

j avax.

xm

xm

xm

xm

. transform Sour ce implementation
.transf orm dom DOMSour ce

.transform sax. SAXSour ce

.transform stream St reanSource

Wraps XML representation
or g. w3c. dom Node

org. xm . sax. | nput Sour ce, and
org. xm . sax. XM_Reader

java.io.File, java.io. | nputStream or
j ava.i o. Reader

Even though there are two separate marshaling interfaces (Marshaller and Unmarshaller), al
implementations found in Spring-WS implement both in one class. This means that you can wire up one
marshaller class and refer to it both as a marshaller and an unmarshaller in your appl i cat i onCont ext . xm .

8.2.3. XmIMappingException

Spring converts exceptions from the underlying O/X mapping tool to its own exception hierarchy with the
Xm Mappi ngExcept i on as the root exception. As can be expected, these runtime exceptions wrap the original
exception so no information will be lost.

Spring-WS (1.0.4) 54

Marshalling XML using O/X Mappers

Additionally, the Mar shal | i ngFai | ur eExcept i on and Unnar shal | i ngFai | ur eExcepti on provide a distinction
between marshalling and unmarshalling operations, even though the underlying O/X mapping tool does not do

SO.

The O/X Mapping exception hierarchy is shown in the following figure:

XmlMappingException

N

GenericMarshallingFailureException ValidationFailureException

N

MarshallingFailureException UnmarshallingFailureException

O/X Mapping exception hierarchy

8.3. Using Marshaller and Unmarshaller

Spring's OXM can be used for awide variety of situations. In the following example, we will use it to marshal
the settings of a Spring-managed application as an XML file. We will use a simple JavaBean to represent the

Settings:

public

class Settings {

private bool ean fooEnabl ed;

publ i ¢ bool ean i sFooEnabl ed() {

}

return fooEnabl ed;

public void set FooEnabl ed(bool ean fooEnabl ed) {

}

thi s. fooEnabl ed = fooEnabl ed;

The application class uses this bean to store its settings. Besides a main method, the class has two methods:
saveSet ti ngs saves the settings bean to a file named set tings. xnl , and | oadSet ti ngs loads these settings
again. A mai n method constructs a Spring application context, and calls these two methods.

i nport
i mport
i nport
i mport
i mport

i mport
i mport
i mport
i mport

public

java.io. FilelnputStream

java.io. FileQutput Stream

java.io. | OExcepti on;

javax. xm . transform stream StreanResul t;
javax. xm . transf orm stream StreanSour ce;

org. springframewor k. cont ext . Appl i cati onCont ext ;

or g. springframewor k. cont ext . support. d assPat hXm Appl i cati onCont ext ;
org. springframewor k. oxm Marshal | er;

or g. spri ngfranmewor k. oxm Unnar shal | er;

class Application {

private static final String FILE NAME = "settings.xm";
private Settings settings = new Settings();

private Marshall er marshaller;

private Unmarshal |l er unmarshaller;

Spring-WS (1.0.4) 55

Marshalling XML using O/X Mappers

public void setMarshaller(Marshaller marshaller) {
this. marshaller = marshall er;
}

public void setUnmarshal |l er(Unmarshal | er unmarshal ler) {
this.unmarshal |l er = unmarshall er;
}

public void saveSettings() throws | OException {
Fi | eCut put Stream os = nul |
try {
0os = new Fil eQut put St rean(FI LE_NAME) ;
this. marshal | er. marshal (settings, new StreanResul t(o0s));

} finally {
if (os !'=null) {
os. cl ose();
}
}

}

public void | oadSettings() throws | OException {
FilelnputStreamis = null;

try {
is = new Fil el nput Stream FI LE_NAME) ;
this.settings = (Settings) this.unmarshall er.unmarshal (new StreanSource(is));

} finally {
if (is!=null) {
is.close();
}

}

public static void main(String[] args) throws | OException {
Appl i cati onCont ext appContext = new Cl assPat hXm Appli cati onCont ext ("applicati onContext.xm ");
Application application = (Application) appContext.getBean("application");
appl i cation. saveSettings();
application.|loadSettings();

}

The Appl i cation requires both a marshaler and unmarshaller property to be set. We can do so using the
following appl i cat i onCont ext . xni :

<beans>
<bean i d="application" class="Application">
<property name="marshal l er" ref="castorMarshaller" />
<property name="unmarshal |l er" ref="castorMrshaller" />
</ bean>
<bean i d="cast or Marshal l er" class="org. spri ngfranework. oxm cast or. Cast or Marshal l er"/ >
</ beans>

This application context uses Castor, but we could have used any of the other marshaller instances described
later in this chapter. Note that Castor does not require any further configuration by default, so the bean
definition is rather simple. Also note that the CastorMarshaller implements both Marshaller and
Unmar shal | er, SO we can refer to the cast or Mar shal | er bean in both the marshaller and unmarshaller property
of the application.

This sample application produces the following set t i ngs. xni file:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<settings foo-enabl ed="fal se"/>

8.4. JAXB

The JAXB binding compiler translates a W3C XML Schema into one or more Java classes, aj axb. properti es

Spring-WS (1.0.4) 56

Marshalling XML using O/X Mappers

file, and possibly other files, depending on the specific implementation of JAXB. Alternatively, JAXB2 offersa
way to generate a schema from annotated Java classes.

Spring supports both the JAXB 1.0 and the JAXB 2.0 APl as XML marshalling strategies, following the
Marshal | er and Unnarshal | er interfaces described in Section 8.2, “Marshaller and Unmarshaller”. The
corresponding integration classes reside in the org.springframework.oxm.jaxb package.

8.4.1. Jaxb1Marshaller

The Jaxb1Mar shal | er class implements both the Spring var shal | er and Unmar shal | er interface. It requires a
context path to operate, which you can set using the contextPath property. The context path isalist of colon (:)
separated Java package names that contain schema derived classes. The marshaller has an additional validating
property which defines whether to validate incoming XML.

The next sample bean configuration shows how to configure a JaxbMar shal | er using the classes generated to
org. springframewor k. ws. sanpl es. airl i ne. schena.

<beans>

<bean i d="jaxblMarshal |l er" class="org.springframework. oxm jaxb. JaxblMarshaller">
<property name="contextPath" val ue="org. spri ngfranmework.ws. sanpl es. airline.schem"/>
</ bean>

</ beans>

8.4.2. Jaxb2Marshaller

The Jaxb2marshal | er can be configured using the same contextPath property as the JaxbiMarshal | er.
However, it also offers a classesToBeBound property, which alows you to set an array of classes to be
supported by the marshaller. Schema validation is performed by specifying one or more schema resource to the
bean, like so:

<beans>

<bean id="jaxb2Marshal | er" cl ass="org. spri ngfranmewor k. oxm j axb. Jaxb2Mar shal | er" >
<property nanme="cl assesToBeBound" >
<list>
<val ue>or g. spri ngf ramewor k. oxm j axb. Fl i ght </ val ue>
<val ue>or g. spri ngf ramewor k. oxm j axb. Fl i ght s</ val ue>
</list>
</ property>
<property name="schema" val ue="cl asspat h: or g/ spri ngf r anewor k/ oxml schema. xsd"/ >
</ bean>

</ beans>

8.5. Castor

Castor XML mapping is an open source XML binding framework. It allows you to transform the data contained
in a java object model into/from an XML document. By default, it does not require any further configuration,
though a mapping file can be used to have more control over the behavior of Castor.

For more information on Castor, refer to the Castor web site. The Spring integration classes reside in the
org.springframework.oxm.castor package.

Spring-WS (1.0.4) 57

http://castor.org/xml-framework.html

Marshalling XML using O/X Mappers

8.5.1. CastorMarshaller

Aswith JAXB, the Cast or Mar shal | er implements both the Mar shal | er and Unnar shal | er interface. It can be
wired up asfollows:

<beans>

<bean i d="castorMarshal l er" class="org. springfranmework. oxm castor. Castor Marshal l er" />

</ beans>

8.5.2. Mapping

Although it is possible to rely on Castor's default marshalling behavior, it might be necessary to have more
control over it. This can be accomplished using a Castor mapping file. For more information, refer to Castor

XML Mapping.

The mapping can be set using the mappingLocation resource property, indicated below with a classpath
resource.

<beans>
<bean i d="castorMarshal |l er" cl ass="org. springfranmework. oxm cast or. Cast or Marshal l er" >
<property nanme="nmappi ngLocati on" val ue="cl asspat h: mappi ng. xm " />
</ bean>
</ beans>

8.6. XMLBeans

XMLBeansisan XML binding tool that has full XML Schema support, and offers full XML Infoset fidelity. It
takes a different approach to that of most other O/X mapping frameworks, in that al classes that are generated
from an XML Schemaare al derived from xm Qbj ect , and contain XML binding information in them.

For more information on XMLBeans, refer to the XMLBeans web site . The Spring-WS integration classes
reside in the org.springframework.oxm.xmlbeans package.

8.6.1. XmIBeansMarshaller

The X BeansMar shal | er implements both the Mar shal | er and Unmar shal | er interfaces. It can be configured
asfollows:

<beans>

<bean i d="xm BeansMarshal |l er" cl ass="org. spri ngfranewor k. oxm xm beans. Xm BeansMar shal l er" />

</ beans>

Note

Note that the Xm BeansMar shal | er can only marsha objects of type Xm bj ect, and not every
j ava. |l ang. Obj ect .

Spring-WS (1.0.4) 58

http://castor.org/xml-mapping.html
http://castor.org/xml-mapping.html
http://xmlbeans.apache.org/

Marshalling XML using O/X Mappers

8.7. JiBX

The JBX framework offers a solution similar to that which JDO provides for ORM: a binding definition
defines the rules for how your Java objects are converted to or from XML. After preparing the binding and
compiling the classes, a JIBX binding compiler enhances the class files, and adds code to handle converting
instances of the classes from or to XML.

For more information on JiBX, refer to the JiBX web site. The Spring integration classes reside in the
org.springframework.oxm.jibx package.

8.7.1. JibxMarshaller

The Ji bxMarshal | er class implements both the Marshal ler and Unmarshal | er interface. To operate, it
requires the name of the class to marshall in, which you can set using the targetClass property. Optionally, you
can set the binding name using the bindingName property. In the next sample, we bind the FI i ght s class:

<beans>
<bean i d="ji bxFlightsMarshal |l er" class="org.springframework.oxm jibx.Ji bxMarshal | er">

<property name="target Cl ass">org. spri ngframewor k. oxm j i bx. Fl i ght s</ property>
</ bean>

A Jibxmarshal I er is configured for a single class. If you want to marshal multiple classes, you have to
configure multiple Ji bxMar shal | er swith different targetClass property values.

8.8. XStream

XStream is a simple library to serialize objects to XML and back again. It does not require any mapping, and
generates clean XML.

For more information on X Stream, refer to the XStream web site. The Spring integration classes reside in the
org.springframework.oxm.xstream package.

8.8.1. XStreamMarshaller

The xst r eamMar shal | er does not require any configuration, and can be configured in an application context
directly. To further customize the XML, you can set an alias map, which consists of string aliases mapped to
classes:

<beans>

<bean i d="xstreamVarshal l er" class="org. springfranework. oxm xstream XSt r eamvar shal | er" >
<property nane="al i ases">
<pr ops>
<prop key="Flight">org. springfranmework. oxm xstream Fl i ght </ pr op>
</ props>
</ property>
</ bean>

</ beans>

Spring-WS (1.0.4) 59

http://jibx.sourceforge.net/
http://xstream.codehaus.org/

Marshalling XML using O/X Mappers

Note

Note that XStream is an XML serialization library, not a data binding library. Therefore, it has
limited namespace support. As such, it is rather unsuitable for usage within Web services.

Spring-WS (1.0.4) 60

Part lll. Other Resources

In addition to this reference documentation, there exist a number of other resources that may help you learn
how to use Spring Web Services. These additional, third-party resources are enumerated in this section.

Spring-WS (1.0.4) 61

Bibliography

[waldo-94] Jim Waldo, Ann Woallrath, and Sam Kendall. A Note on Distributed Computing. Springer Verlag.
1994.

[alpine] Steve Loughran and Edmund Smith. Rethinking the Java SOAP Stack. May 17, 2005. Copyright ©
2005 |EEE Telephone Laboratories, Inc..

[effective-enterprise-java] Ted Neward. Scott Meyers. Effective Enterprise Java. Addison-Wesley. 2004.

[effective-xml] Elliotte Rusty Harold. Scott Meyers. Effective XML. Addison-Wesley. 2004.

Spring-WS (1.0.4) 62

	Spring Web Services - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. What is Spring Web Services?
	1.1. Introduction
	1.2. Runtime environment

	Chapter 2. Why Contract First?
	2.1. Introduction
	2.2. Object/XML Impedance Mismatch
	2.2.1. XSD extensions
	2.2.2. Unportable types
	2.2.3. Cyclic graphs

	2.3. Contract-first versus Contract-last
	2.3.1. Fragility
	2.3.2. Performance
	2.3.3. Reusability
	2.3.4. Versioning

	Chapter 3. Writing Contract-First Web Services
	3.1. Introduction
	3.2. Messages
	3.2.1. Holiday
	3.2.2. Employee
	3.2.3. HolidayRequest

	3.3. Data Contract
	3.4. Service contract
	3.5. Creating the project
	3.6. Implementing the Endpoint
	3.6.1. Handling the XML Message
	3.6.2. Routing the Message to the Endpoint

	3.7. Publishing the WSDL

	Part II. Reference
	Chapter 4. Shared components
	4.1. Web service messages
	4.1.1. WebServiceMessage
	4.1.2. SoapMessage
	4.1.3. Message Factories
	4.1.3.1. SaajSoapMessageFactory
	4.1.3.2. AxiomSoapMessageFactory
	4.1.3.3. SOAP 1.1 or 1.2

	4.1.4. MessageContext

	4.2. TransportContext
	4.3. Handling XML With XPath
	4.3.1. XPathExpression
	4.3.2. XPathTemplate

	Chapter 5. Creating a Web service with Spring-WS
	5.1. Introduction
	5.2. The MessageDispatcher
	5.2.1. MessageDispatcherServlet
	5.2.1.1. Automatic WSDL exposure
	5.2.1.1.1. Exposing a static WSDL
	5.2.1.1.2. Dynamically creating a WSDL from an XSD

	5.2.2. Wiring up Spring-WS in a DispatcherServlet

	5.3. Endpoints
	5.3.1. AbstractDomPayloadEndpoint and other DOM endpoints
	5.3.2. AbstractMarshallingPayloadEndpoint
	5.3.3. @Endpoint
	5.3.3.1. @XPathParam

	5.4. Endpoint mappings
	5.4.1. PayloadRootQNameEndpointMapping
	5.4.2. SoapActionEndpointMapping
	5.4.3. MethodEndpointMapping
	5.4.4. Intercepting requests - the EndpointInterceptor interface
	5.4.4.1. PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor
	5.4.4.2. PayloadValidatingInterceptor
	5.4.4.3. PayloadTransformingInterceptor

	5.5. Handling Exceptions
	5.5.1. SoapFaultMappingExceptionResolver
	5.5.2. SoapFaultAnnotationExceptionResolver

	Chapter 6. Using Spring Web Services on the Client
	6.1. Introduction
	6.2. Using the client-side API
	6.2.1. WebServiceTemplate
	6.2.1.1. URIs and Transports
	6.2.1.2. Message factories

	6.2.2. Sending and receiving a WebServiceMessage
	6.2.3. Sending and receiving POJOs - marshalling and unmarshalling
	6.2.4. WebServiceMessageCallback
	6.2.5. WebServiceMessageExtractor

	Chapter 7. Securing your Web services with Spring-WS
	7.1. Introduction
	7.2. XwsSecurityInterceptor
	7.3. Keystores
	7.3.1. KeyTool
	7.3.2. KeyStoreFactoryBean
	7.3.3. KeyStoreCallbackHandler

	7.4. Authentication
	7.4.1. Plain Text Username Authentication
	7.4.1.1. SimplePasswordValidationCallbackHandler
	7.4.1.2. AcegiPlainTextPasswordValidationCallbackHandler
	7.4.1.3. JaasPlainTextPasswordValidationCallbackHandler

	7.4.2. Digest Username Authentication
	7.4.2.1. SimplePasswordValidationCallbackHandler
	7.4.2.2. AcegiDigestPasswordValidationCallbackHandler

	7.4.3. Certificate Authentication
	7.4.3.1. KeyStoreCallbackHandler
	7.4.3.2. AcegiCertificateValidationCallbackHandler
	7.4.3.3. JaasCertificateValidationCallbackHandler

	7.5. Digital Signatures
	7.5.1. Verifying Signatures
	7.5.1.1. KeyStoreCallbackHandler

	7.5.2. Signing Messages
	7.5.2.1. KeyStoreCallbackHandler

	7.6. Encryption and Decryption
	7.6.1. Decryption
	7.6.1.1. KeyStoreCallbackHandler

	7.6.2. Encryption
	7.6.2.1. KeyStoreCallbackHandler

	Chapter 8. Marshalling XML using O/X Mappers
	8.1. Introduction
	8.2. Marshaller and Unmarshaller
	8.2.1. Marshaller
	8.2.2. Unmarshaller
	8.2.3. XmlMappingException

	8.3. Using Marshaller and Unmarshaller
	8.4. JAXB
	8.4.1. Jaxb1Marshaller
	8.4.2. Jaxb2Marshaller

	8.5. Castor
	8.5.1. CastorMarshaller
	8.5.2. Mapping

	8.6. XMLBeans
	8.6.1. XmlBeansMarshaller

	8.7. JiBX
	8.7.1. JibxMarshaller

	8.8. XStream
	8.8.1. XStreamMarshaller

	Part III. Other Resources
	Bibliography

