
1.0.4

Copyright © 2005-2007 Arjen Poutsma, Rick Evans

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Preface .. iv
I. Introduction .. 1

1. What is Spring Web Services? ... 2
1.1. Introduction ... 2
1.2. Runtime environment ... 2

2. Why Contract First? .. 4
2.1. Introduction ... 4
2.2. Object/XML Impedance Mismatch .. 4

2.2.1. XSD extensions ... 4
2.2.2. Unportable types ... 4
2.2.3. Cyclic graphs .. 5

2.3. Contract-first versus Contract-last ... 6
2.3.1. Fragility .. 6
2.3.2. Performance .. 6
2.3.3. Reusability .. 7
2.3.4. Versioning .. 7

3. Writing Contract-First Web Services .. 8
3.1. Introduction ... 8
3.2. Messages ... 8

3.2.1. Holiday ... 8
3.2.2. Employee .. 8
3.2.3. HolidayRequest ... 9

3.3. Data Contract ... 9
3.4. Service contract ... 11
3.5. Creating the project .. 13
3.6. Implementing the Endpoint ... 13

3.6.1. Handling the XML Message ... 14
3.6.2. Routing the Message to the Endpoint .. 15

3.7. Publishing the WSDL ... 16
II. Reference .. 17

4. Shared components ... 18
4.1. Web service messages .. 18

4.1.1. WebServiceMessage .. 18
4.1.2. SoapMessage ... 18
4.1.3. Message Factories ... 18
4.1.4. MessageContext .. 20

4.2. TransportContext ... 20
4.3. Handling XML With XPath .. 21

4.3.1. XPathExpression .. 21
4.3.2. XPathTemplate .. 22

5. Creating a Web service with Spring-WS ... 23
5.1. Introduction ... 23
5.2. The MessageDispatcher ... 23

5.2.1. MessageDispatcherServlet .. 24
5.2.2. Wiring up Spring-WS in a DispatcherServlet ... 26

5.3. Endpoints .. 26
5.3.1. AbstractDomPayloadEndpoint and other DOM endpoints 27
5.3.2. AbstractMarshallingPayloadEndpoint ... 28
5.3.3. @Endpoint ... 30

5.4. Endpoint mappings ... 32
5.4.1. PayloadRootQNameEndpointMapping .. 32
5.4.2. SoapActionEndpointMapping .. 32

Spring-WS (1.0.4) ii

5.4.3. MethodEndpointMapping ... 33
5.4.4. Intercepting requests - the EndpointInterceptor interface 33

5.5. Handling Exceptions .. 35
5.5.1. SoapFaultMappingExceptionResolver .. 36
5.5.2. SoapFaultAnnotationExceptionResolver ... 36

6. Using Spring Web Services on the Client ... 38
6.1. Introduction ... 38
6.2. Using the client-side API .. 38

6.2.1. WebServiceTemplate ... 38
6.2.2. Sending and receiving a WebServiceMessage .. 38
6.2.3. Sending and receiving POJOs - marshalling and unmarshalling 39
6.2.4. WebServiceMessageCallback .. 40
6.2.5. WebServiceMessageExtractor ... 40

7. Securing your Web services with Spring-WS .. 41
7.1. Introduction ... 41
7.2. XwsSecurityInterceptor .. 41
7.3. Keystores ... 42

7.3.1. KeyTool ... 42
7.3.2. KeyStoreFactoryBean .. 42
7.3.3. KeyStoreCallbackHandler .. 43

7.4. Authentication ... 44
7.4.1. Plain Text Username Authentication ... 44
7.4.2. Digest Username Authentication .. 46
7.4.3. Certificate Authentication .. 47

7.5. Digital Signatures ... 49
7.5.1. Verifying Signatures .. 49
7.5.2. Signing Messages .. 50

7.6. Encryption and Decryption ... 50
7.6.1. Decryption .. 50
7.6.2. Encryption .. 51

8. Marshalling XML using O/X Mappers ... 53
8.1. Introduction ... 53
8.2. Marshaller and Unmarshaller .. 53

8.2.1. Marshaller ... 53
8.2.2. Unmarshaller .. 54
8.2.3. XmlMappingException .. 54

8.3. Using Marshaller and Unmarshaller ... 55
8.4. JAXB .. 56

8.4.1. Jaxb1Marshaller .. 57
8.4.2. Jaxb2Marshaller .. 57

8.5. Castor .. 57
8.5.1. CastorMarshaller ... 58
8.5.2. Mapping ... 58

8.6. XMLBeans .. 58
8.6.1. XmlBeansMarshaller ... 58

8.7. JiBX .. 59
8.7.1. JibxMarshaller .. 59

8.8. XStream .. 59
8.8.1. XStreamMarshaller ... 59

III. Other Resources .. 61
Bibliography .. 62

Spring Web Services - Reference Documentation

Spring-WS (1.0.4) iii

Preface
In the current age of Service Oriented Architectures, more and more people are using Web Services to connect
previously unconnected systems. Initially, Web services were considered to be just another way to do a Remote
Procedure Call (RPC). Over time however, people found out that there is a big difference between RPCs and
Web services. Especially when interoperability with other platforms is important, it is often better to send
encapsulated XML documents, containing all the data necessary to process the request. Conceptually,
XML-based Web services are better off being compared to message queues rather than remoting solutions.
Overall, XML should be considered the platform-neutral representation of data, the interlingua of SOA. When
developing or using Web services, the focus should be on this XML, and not on Java.

Spring Web Services focusses on creating these document-driven Web services. Spring Web Services
facilitates contract-first SOAP service development, allowing for the creation of flexible web services using
one of the many ways to manipulate XML payloads. Spring-WS provides a powerful message dispatching
framework, various XML marshalling techniques that can be used outside a Web service environment, a
WS-Security solution that integrates with your existing application security solution, and a Client-side API that
follows the familiar Spring template pattern.

This document provides a reference guide to Spring-WS's features. Since this document is still a
work-in-progress, if you have any requests or comments, please post them on the support forums at
http://forum.springframework.org/forumdisplay.php?f=39.

Spring-WS (1.0.4) iv

http://forum.springframework.org/forumdisplay.php?f=39

Part I. Introduction
This first part of the reference documentation is an overview of Spring Web Services and the underlying
concepts. Spring-WS is then introduced, and the concepts behind contract-first Web service development are
explained.

Spring-WS (1.0.4) 1

Chapter 1. What is Spring Web Services?

1.1. Introduction

Spring Web Services (Spring-WS) is a product of the Spring community focused on creating document-driven
Web services. Spring Web Services aims to facilitate contract-first SOAP service development, allowing for the
creation of flexible web services using one of the many ways to manipulate XML payloads. The product is
based on Spring itself, which means you can use the Spring concepts such as dependency injection as an
integral part of your Web service.

People use Spring-WS for many reasons, but most are drawn to it after finding alternative SOAP stacks lacking
when it comes to following Web service best practices. Spring-WS makes the best practice an easy practice.
This includes practices such as the WS-I basic profile, Contract-First development, and having a loose coupling
between contract and implementation. The other key features of Spring Web services are:

Powerful mappings. You can distribute incoming XML requests to any object, depending on message
payload, SOAP Action header, or an XPath expression.

XML API support. Incoming XML messages can be handled not only with standard JAXP APIs such as
DOM, SAX, and StAX, but also JDOM, dom4j, XOM, or even marshalling technologies.

Flexible XML Marshalling. The Object/XML Mapping module in the Spring Web Services distribution
supports JAXB 1 and 2, Castor, XMLBeans, JiBX, and XStream. And because it is a separate module, you can
use it in non-Web services code as well.

Reuses your Spring expertise. Spring-WS uses Spring application contexts for all configuration, which
should help Spring developers get up-to-speed nice and quickly. Also, the architecture of Spring-WS resembles
that of Spring-MVC.

Supports WS-Security. WS-Security allows you to sign SOAP messages, encrypt and decrypt them, or
authenticate against them.

Integrates with Acegi Security. The WS-Security implementation of Spring Web Services provides
integration with Acegi Security. This means you can use your existing Acegi configuration for your SOAP
service as well.

Built by Maven. This assists you in effectively reusing the Spring Web Services artifacts in your own
Maven-based projects.

Apache license. You can confidently use Spring-WS in your project.

1.2. Runtime environment

Spring Web Services runs within a standard Java 1.3 Runtime Environment. It also supports Java 5.0, although
the Java types which are specific to this release are packaged in a separate modules with the suffix "tiger" in
their JAR filename. Note that the security module also requires Java 5.

Spring-WS consists of a number of modules, which are described in the remainder of this section.

• The XML module (spring-xml.jar) contains various XML support classes for Spring Web Services. This

Spring-WS (1.0.4) 2

http://acegisecurity.org

module is mainly intended for the Spring-WS framework itself, and not a Web service developers.

• The Core package (spring-ws-core.jar and spring-ws-core-tiger.jar) is the central part of the Spring's
Web services functionality. It provides the central WebServiceMessage and SoapMessage interfaces, the
server-side framework, with powerful message dispatching, and the various support classes for implementing
Web service endpoints; and the client-side WebServiceTemplate.

• The Security package (spring-ws-security.jar) provides a WS-Security implementation that integrates
with the core Web service package. It allows you to add principal tokens, sign, and decrypt and encrypt
SOAP messages. Addtionally, it allows you to leverage your existing Acegi security implementation for
authentication and authorization.

• The OXM package (spring-oxm.jar and spring-oxm-tiger.jar) provides integration for popular XML
marshalling APIs, including JAXB 1 and 2. Using the OXM package means that you benefit from a unified
exception hierarchy, and can wire up your favorite XML marshalling technology easily.

The following figure illustrates the Spring-WS modules and the dependencies between them. Arrows indicate
dependencies, i.e. Spring-WS Core depends on Spring-XML and Spring-OXM.

Dependencies between Spring-WS modules

What is Spring Web Services?

Spring-WS (1.0.4) 3

1Most of the contents in this section was inspired by [alpine] and [effective-enterprise-java].

Chapter 2. Why Contract First?

2.1. Introduction

When creating Web services, there are two development styles: Contract Last and Contract First. When using
a contract-last approach, you start with the Java code, and let the Web service contract (WSDL, see sidebar) be
generated from that. When using contract-first, you start with the WSDL contract, and use Java to implement
said contract.

What is WSDL?

WSDL stands for Web Services Description Language. A WSDL file is an XML document that describes
a Web service. It specifies the location of the service and the operations (or methods) the service exposes.
For more information about WSDL, refer to the WSDL specification, or read the WSDL tutorial

Spring-WS only supports the contract-first development style, and this section explains why.

2.2. Object/XML Impedance Mismatch

Similar to the field of ORM, where we have an Object/Relational impedance mismatch, there is a similar
problem when converting Java objects to XML. At first glance, the O/X mapping problem appears simple:
create an XML element for each Java object, converting all Java properties and fields to sub-elements or
attributes. However, things are not as simple as they appear: there is a fundamental difference between
hierarchical languages such as XML (and especially XSD) and the graph model of Java1.

2.2.1. XSD extensions

In Java, the only way to change the behavior of a class is to subclass it, adding the new behavior to that
subclass. In XSD, you can extend a data type by restricting it: that is, constraining the valid values for the
elements and attributes. For instance, consider the following example:

<simpleType name="AirportCode">
<restriction base="string">

<pattern value="[A-Z][A-Z][A-Z]"/>
</restriction>

</simpleType>

This type restricts a XSD string by ways of a regular expression, allowing only three upper case letters. If this
type is converted to Java, we will end up with an ordinary java.lang.String; the regular expression is lost in
the conversion process, because Java does not allow for these sorts of extensions.

2.2.2. Unportable types

One of the most important goals of a Web service is to be interoperable: to support multiple platforms such as
Java, .NET, Python, etc. Because all of these languages have different class libraries, you must use some
common, interlingual format to communicate between them. That format is XML, which is supported by all of

Spring-WS (1.0.4) 4

http://www.w3.org/TR/wsdl
http://www.w3schools.com/wsdl/
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch

these languages.

Because of this conversion, you must make sure that you use portable types in your service implementation.
Consider, for example, a service that returns a java.util.TreeMap, like so:

public Map getFlights() {
// use a tree map, to make sure it's sorted
TreeMap map = new TreeMap();
map.put("KL1117", "Stockholm");
...
return map;

}

Undoubtedly, the contents of this map can be converted into some sort of XML, but since there is no standard
way to describe a map in XML, it will be proprietary. Also, even if it can be converted to XML, many
platforms do not have a data structure similar to the TreeMap. So when a .NET client accesses your Web
service, it will probably end up with a System.Collections.Hashtable, which has different semantics.

This problem is also present when working on the client side. Consider the following XSD snippet, which
describes a service contract:

<element name="GetFlightsRequest">
<complexType>
<all>
<element name="departureDate" type="date"/>
<element name="from" type="string"/>
<element name="to" type="string"/>

</all>
</complexType>

</element>

This contract defines a request that takes an date, which is a XSD datatype representing a year, month, and day.
If we call this service from Java, we will probably use either a java.util.Date or java.util.Calendar.
However, both of these classes actually describe times, rather than dates. So, we will actually end up sending
data that represents the fourth of April 2007 at midnight (2007-04-04T00:00:00), which is not the same as
2007-04-04.

2.2.3. Cyclic graphs

Imagine we have the following simple class structure:

public class Flight {
private String number;
private List<Passenger> passengers;

// getters and setters omitted
}

public class Passenger {
private String name;
private Flight flight;

// getters and setters omitted
}

This is a cyclic graph: the Flight refers to the Passenger, which refers to the Flight again. Cyclic graphs like
these are quite common in Java. If we took a naive approach to converting this to XML, we will end up with
something like:

<flight number="KL1117">
<passengers>

Why Contract First?

Spring-WS (1.0.4) 5

<passenger>
<name>Arjen Poutsma</name>
<flight number="KL1117">

<passengers>
<passenger>
<name>Arjen Poutsma</name>
<flight number="KL1117">
<passengers>

<passenger>
<name>Arjen Poutsma</name>
...

which will take a pretty long time to finish, because there is no stop condition for this loop.

One way to solve this problem is to use references to objects that were already marshalled, like so:

<flight number="KL1117">
<passengers>
<passenger>
<name>Arjen Poutsma</name>
<flight href="KL1117" />

</passenger>
...

</passengers>
</flight>

This solves the recursiveness problem, but introduces new ones. For one, you cannot use an XML validator to
validate this structure. Another issue is that the standard way to use these references in SOAP (RPC/encoded)
has been deprecated in favor of document/literal (see WS-I Basic Profile).

These are just a few of the problems when dealing with O/X mapping. It is important to respect these issues
when writing Web services. The best way to respect them is to focus on the XML completely, while using Java
as an implementation language. This is what contract-first is all about.

2.3. Contract-first versus Contract-last

Besides the Object/XML Mapping issues mentioned in the previous section, there are other reasons for
preferring a contract-first development style.

2.3.1. Fragility

As mentioned earlier, the contract-last development style results in your web service contract (WSDL and your
XSD) being generated from your Java contract (usually an interface). If you are using this approach, you will
have no guarantee that the contract stays constant over time. Each time you change your Java contract and
redeploy it, there might be subsequent changes to the web service contract.

Aditionally, not all SOAP stacks generate the same web service contract from a Java contract. This means
changing your current SOAP stack for a different one (for whatever reason), might also change your web
service contract.

When a web service contract changes, users of the contract will have to be instructed to obtain the new contract
and potentially change their code to accommodate for any changes in the contract.

In order for a contract to be useful, it must remain constant for as long as possible. If a contract changes, you
will have to contact all of the users of your service, and instruct them to get the new version of the contract.

2.3.2. Performance

Why Contract First?

Spring-WS (1.0.4) 6

http://www.ws-i.org/Profiles/BasicProfile-1.1.html#SOAP_encodingStyle_Attribute

When Java is automatically transformed into XML, there is no way to be sure as to what is sent across the wire.
An object might reference another object, which refers to another, etc. In the end, half of the objects on the
heap in your virtual machine might be converted into XML, which will result in slow response times.

When using contract-first, you explicitly describe what XML is sent where, thus making sure that it is exactly
what you want.

2.3.3. Reusability

Defining your schema in a separate file allows you to reuse that file in different scenarios. If you define an
AirportCode in a file called airline.xsd, like so:

<simpleType name="AirportCode">
<restriction base="string">

<pattern value="[A-Z][A-Z][A-Z]"/>
</restriction>

</simpleType>

You can reuse this definition in other schemas, or even WSDL files, using an import statement.

2.3.4. Versioning

Even though a contract must remain constant for as long as possible, they do need to be changed sometimes. In
Java, this typically results in a new Java interface, such as AirlineService2, and a (new) implementation of
that interface. Of course, the old service must be kept around, because there might be clients who have not
migrated yet.

If using contract-first, we can have a looser coupling between contract and implementation. Such a looser
coupling allows us to implement both versions of the contract in one class. We could, for instance, use an
XSLT stylesheet to convert any "old-style" messages to the "new-style" messages.

Why Contract First?

Spring-WS (1.0.4) 7

Chapter 3. Writing Contract-First Web Services

3.1. Introduction

This tutorial shows you how to write contract-first Web services, that is, developing web services that start with
the XML Schema/WSDL contract first followed by the Java code second. Spring-WS focuses on this
development style, and this tutorial will help you get started. Note that the first part of this tutorial contains
almost no Spring-WS specific information: it is mostly about XML, XSD, and WSDL. The second part
focusses on implementing this contract using Spring-WS .

The most important thing when doing contract-first Web service development is to try and think in terms of
XML. This means that Java-language concepts are of lesser importance. It is the XML that is sent across the
wire, and you should focus on that. The fact that Java is used to implement the Web service is an
implementation detail. An important detail, but a detail nonetheless.

In this tutorial, we will define a Web service that is created by a Human Resources department. Clients can
send holiday request forms to this service to book a holiday.

3.2. Messages

In this section, we will focus on the actual XML messages that are sent to and from the Web service. We will
start out by determining what these messages look like.

3.2.1. Holiday

In the scenario, we have to deal with holiday requests, so it makes sense to determine what a holiday looks like
in XML:

<Holiday xmlns="http://mycompany.com/hr/schemas">
<StartDate>2006-07-03</StartDate>
<EndDate>2006-07-07</EndDate>

</Holiday>

A holiday consists of a start date and an end date. We have also decided to use the standard ISO 8601 date
format for the dates, because that will save a lot of parsing hassle. We have also added a namespace to the
element, to make sure our elements can used within other XML documents.

3.2.2. Employee

There is also the notion of an employee in the scenario. Here is what it looks like in XML:

<Employee xmlns="http://mycompany.com/hr/schemas">
<Number>42</Number>
<FirstName>Arjen</FirstName>
<LastName>Poutsma</LastName>

</Employee>

We have used the same namespace as before. If this <Employee/> element could be used in other scenarios, it
might make sense to use a different namespace, such as http://mycompany.com/employees/schemas.

Spring-WS (1.0.4) 8

http://www.cl.cam.ac.uk/~mgk25/iso-time.html

3.2.3. HolidayRequest

Both the holiday and employee element can be put in a <HolidayRequest/>:

<HolidayRequest xmlns="http://mycompany.com/hr/schemas">
<Holiday>

<StartDate>2006-07-03</StartDate>
<EndDate>2006-07-07</EndDate>

</Holiday>
<Employee>

<Number>42</Number>
<FirstName>Arjen</FirstName>
<LastName>Poutsma</LastName>

</Employee>
</HolidayRequest>

The order of the two elements does not matter: <Employee/> could have been the first element just as well.
What is important is that all of the data is there. In fact, the data is the only thing that is important: we are
taking a data-driven approach.

3.3. Data Contract

Now that we have seen some examples of the XML data that we will use, it makes sense to formalize this into a
schema. This data contract defines the message format we accept. There are four different ways of defining
such a contract for XML:

• DTDs

• XML Schema (XSD)

• RELAX NG

• Schematron

DTDs have limited namespace support, so they are not suitable for Web services. Relax NG and Schematron
certainly are easier than XML Schema. Unfortunately, they are not so widely supported across platforms. We
will use XML Schema.

By far the easiest way to create an XSD is to infer it from sample documents. Any good XML editor or Java
IDE offers this functionality. Basically, these tools use some sample XML documents, and generate a schema
from it that validates them all. The end result certainly needs to be polished up, but it's a great starting point.

Using the sample described above, we end up with the following generated schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://mycompany.com/hr/schemas"
xmlns:hr="http://mycompany.com/hr/schemas">

<xs:element name="HolidayRequest">
<xs:complexType>

<xs:sequence>
<xs:element ref="hr:Holiday"/>
<xs:element ref="hr:Employee"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Holiday">

<xs:complexType>
<xs:sequence>

<xs:element ref="hr:StartDate"/>

Writing Contract-First Web Services

Spring-WS (1.0.4) 9

http://www.w3.org/XML/Schema
http://www.relaxng.org/
http://www.schematron.com/

<xs:element ref="hr:EndDate"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="StartDate" type="xs:NMTOKEN"/>
<xs:element name="EndDate" type="xs:NMTOKEN"/>
<xs:element name="Employee">

<xs:complexType>
<xs:sequence>

<xs:element ref="hr:Number"/>
<xs:element ref="hr:FirstName"/>
<xs:element ref="hr:LastName"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Number" type="xs:integer"/>
<xs:element name="FirstName" type="xs:NCName"/>
<xs:element name="LastName" type="xs:NCName"/>

</xs:schema>

This generated schema obviously can be improved. The first thing to notice is that every type has a root-level
element declaration. This means that the Web service should be able to accept all of these elements as data.
This is not desirable: we only want to accept a <HolidayRequest/>. By removing the wrapping element tags
(thus keeping the types), and inlining the results, we can accomplish this.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:hr="http://mycompany.com/hr/schemas"
elementFormDefault="qualified"
targetNamespace="http://mycompany.com/hr/schemas">

<xs:element name="HolidayRequest">
<xs:complexType>

<xs:sequence>
<xs:element name="Holiday" type="hr:HolidayType"/>
<xs:element name="Employee" type="hr:EmployeeType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name="HolidayType">

<xs:sequence>
<xs:element name="StartDate" type="xs:NMTOKEN"/>
<xs:element name="EndDate" type="xs:NMTOKEN"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="EmployeeType">

<xs:sequence>
<xs:element name="Number" type="xs:integer"/>
<xs:element name="FirstName" type="xs:NCName"/>
<xs:element name="LastName" type="xs:NCName"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

The schema still has one problem: with a schema like this, you can expect the following messages to validate:

<HolidayRequest xmlns="http://mycompany.com/hr/schemas">
<Holiday>

<StartDate>this is not a date</StartDate>
<EndDate>neither is this</EndDate>

</Holiday>
<!-- ... -->

</HolidayRequest>

Clearly, we must make sure that the start and end date are really dates. XML Schema has an excellent built-in
date type which we can use. We also change the NCNames to strings. Finally, we change the sequence in
<HolidayRequest/> to all. This tells the XML parser that the order of <Holiday/> and <Employee/> is not
significant. Our final XSD now looks like this:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

Writing Contract-First Web Services

Spring-WS (1.0.4) 10

xmlns:hr="http://mycompany.com/hr/schemas"
elementFormDefault="qualified"
targetNamespace="http://mycompany.com/hr/schemas">

<xs:element name="HolidayRequest">
<xs:complexType>

<xs:all>
<xs:element name="Holiday" type="hr:HolidayType"/> ❶
<xs:element name="Employee" type="hr:EmployeeType"/>

</xs:all>
</xs:complexType>

</xs:element>
<xs:complexType name="HolidayType">

<xs:sequence>
<xs:element name="StartDate" type="xs:date"/>
<xs:element name="EndDate" type="xs:date"/> ❷

</xs:sequence> ❷
</xs:complexType>
<xs:complexType name="EmployeeType">

<xs:sequence>
<xs:element name="Number" type="xs:integer"/>
<xs:element name="FirstName" type="xs:string"/>
<xs:element name="LastName" type="xs:string"/> ❸

</xs:sequence> ❸
</xs:complexType>

</xs:schema>

❶ all tells the XML parser that the order of <Holiday/> and <Employee/> is not significant.
❷ We use the xsd:date data type, which consist of a year, month, and day, for <StartDate/> and

<EndDate/>.
❸ xsd:string is used for the first and last name.

We store this file as hr.xsd.

3.4. Service contract

A service contract is generally expressed as a WSDL file. Note that in Spring-WS, writing the WSDL by hand
is not required. Based on the XSD and some conventions, Spring-WS can create the WSDL for you, as
explained in the section entitled Section 3.6, “Implementing the Endpoint”. You can skip to the next section if
you want to; the remainder of this section will show you how to write your own WSDL by hand.

We start our WSDL with the standard preamble, and by importing our existing XSD. To separate the schema
from the definition, we will use a separate namespace for the WSDL definitions:
http://mycompany.com/hr/definitions.

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:schema="http://mycompany.com/hr/schemas"
xmlns:tns="http://mycompany.com/hr/definitions"
targetNamespace="http://mycompany.com/hr/definitions">

<wsdl:types>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:import namespace="http://mycompany.com/hr/schemas" schemaLocation="hr.xsd"/>
</xsd:schema>

</wsdl:types>

Next, we add our messages based on the written schema types. We only have one message: one with the
<HolidayRequest/> we put in the schema:

<wsdl:message name="HolidayRequest">
<wsdl:part element="schema:HolidayRequest" name="HolidayRequest"/>

</wsdl:message>

Writing Contract-First Web Services

Spring-WS (1.0.4) 11

http://www.w3.org/TR/wsdl

We add the message to a port type as an operation:

<wsdl:portType name="HumanResource">
<wsdl:operation name="Holiday">

<wsdl:input message="tns:HolidayRequest" name="HolidayRequest"/>
</wsdl:operation>

</wsdl:portType>

That finished the abstract part of the WSDL (the interface, as it were), and leaves the concrete part. The
concrete part consists of a binding, which tells the client how to invoke the operations you've just defined; and
a service, which tells it where to invoke it.

Adding a concrete part is pretty standard: just refer to the abstract part you defined previously, make sure you
use document/literal for the soap:binding elements (rpc/encoded is deprecated), pick a soapAction for the
operation (in this case http://mycompany.com/RequestHoliday, but any URI will do), and determine the
location URL where you want request to come in (in this case http://mycompany.com/humanresources):

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:schema="http://mycompany.com/hr/schemas"
xmlns:tns="http://mycompany.com/hr/definitions"
targetNamespace="http://mycompany.com/hr/definitions">

<wsdl:types>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:import namespace="http://mycompany.com/hr/schemas" ❶
schemaLocation="hr.xsd"/>

</xsd:schema>
</wsdl:types>
<wsdl:message name="HolidayRequest"> ❷

<wsdl:part element="schema:HolidayRequest" name="HolidayRequest"/> ❸
</wsdl:message>
<wsdl:portType name="HumanResource"> ❹

<wsdl:operation name="Holiday">
<wsdl:input message="tns:HolidayRequest" name="HolidayRequest"/> ❷

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="HumanResourceBinding" type="tns:HumanResource"> ❹❺

<soap:binding style="document" ❻
transport="http://schemas.xmlsoap.org/soap/http"/> ❼

<wsdl:operation name="Holiday">
<soap:operation soapAction="http://mycompany.com/RequestHoliday"/> ❽
<wsdl:input name="HolidayRequest">

<soap:body use="literal"/> ❻
</wsdl:input>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name="HumanResourceService">

<wsdl:port binding="tns:HumanResourceBinding" name="HumanResourcePort"> ❺
<soap:address location="http://localhost:8080/holidayService/"/> ❾

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

❶ We import the schema defined in Section 3.3, “Data Contract”.
❷ We define the HolidayRequest message, which gets used in the portType.
❸ The HolidayRequest type is defined in the schema.
❹ We define the HumanResource port type, which gets used in the binding.
❺ We define the HumanResourceBinding binding, which gets used in the port.
❻ We use a document/literal style.
❼ The literal http://schemas.xmlsoap.org/soap/http signifies a HTTP transport.
❽ The soapAction attribute signifies the SOAPAction HTTP header that will be sent with every request.
❾ The http://localhost:8080/holidayService/ address is the URL where the Web service can be

invoked.

Writing Contract-First Web Services

Spring-WS (1.0.4) 12

This is the final WSDL. We will describe how to implement the resulting schema and WSDL in the next
section.

3.5. Creating the project

In this section, we will be using Maven2 to create the initial project structure for us. Doing so is not required,
but greatly reduces the amount of code we have to write to setup our HolidayService.

The following command creates a Maven2 web application project for us, using the Spring-WS archetype (that
is, project template)

mvn archetype:create -DarchetypeGroupId=org.springframework.ws \
-DarchetypeArtifactId=spring-ws-archetype \
-DarchetypeVersion=1.0.4 \
-DgroupId=com.mycompany.hr \
-DartifactId=holidayService

This command will create a new directory called holidayService. In this directory, there is a
'src/main/webapp' directory, which will contain the root of the WAR file. You will find the standard web
application deployment descriptor 'WEB-INF/web.xml' here, which defines a Spring-WS
MessageDispatcherServlet and maps all incoming requests to this servlet:

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<display-name>MyCompany HR Holiday Service</display-name>

<!-- take especial notice of the name of this servlet -->
<servlet>

<servlet-name>spring-ws</servlet-name>
<servlet-class>org.springframework.ws.transport.http.MessageDispatcherServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>spring-ws</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

</web-app>

In addition to the above 'WEB-INF/web.xml' file, you will also need another, Spring-WS-specific configuration
file, named 'WEB-INF/spring-ws-servlet.xml'. This file contains all of the Spring-WS-specific beans such as
EndPoints, WebServiceMessageReceivers, and suchlike, and is used to create a new Spring container. The
name of this file is derived from the name of the attendant servlet (in this case 'spring-ws') with
'-servlet.xml' appended to it. So if you defined a MessageDispatcherServlet with the name 'dynamite',
the name of the Spring-WS-specific configuration file would be 'WEB-INF/dynamite-servlet.xml'.

(You can see the contents of the 'WEB-INF/spring-ws-servlet.xml' file for this example in ???.)

3.6. Implementing the Endpoint

In Spring-WS, you will implement Endpoints to handle incoming XML messages. There are two flavors of
endpoints: message endpoints and payload endpoints. Message endpoints give access to the entire XML
message, including SOAP headers. Typically, the endpoint will only be interested in the payload of the

Writing Contract-First Web Services

Spring-WS (1.0.4) 13

http://maven.apache.org/

message, that is the contents of the SOAP body. In that case, creating a payload endpoint makes more sense.

3.6.1. Handling the XML Message

In this sample application, we are going to use JDom to handle the XML message. We are also using XPath,
because it allows us to select particular parts of the XML JDOM tree, without requiring strict schema
conformance. We extend our endpoint from AbstractJDomPayloadEndpoint, because that will give us a JDOM
element to execute the XPath queries on.

package com.mycompany.hr.ws;

import java.text.SimpleDateFormat;
import java.util.Date;

import com.mycompany.hr.service.HumanResourceService;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.Namespace;
import org.jdom.xpath.XPath;
import org.springframework.ws.server.endpoint.AbstractJDomPayloadEndpoint;

public class HolidayEndpoint extends AbstractJDomPayloadEndpoint {

private XPath startDateExpression;

private XPath endDateExpression;

private XPath nameExpression;

private final HumanResourceService humanResourceService;

public HolidayEndpoint(HumanResourceService humanResourceService) { ❶
this.humanResourceService = humanResourceService;
Namespace namespace = Namespace.getNamespace("hr", "http://mycompany.com/hr/schemas");
startDateExpression = XPath.newInstance("//hr:StartDate");
startDateExpression.addNamespace(namespace);
endDateExpression = XPath.newInstance("//hr:EndDate");
endDateExpression.addNamespace(namespace);
nameExpression = XPath.newInstance("concat(//hr:FirstName,' ',//hr:LastName)");
nameExpression.addNamespace(namespace);

}

protected Element invokeInternal(Element holidayRequest) throws Exception { ❷
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
Date startDate = dateFormat.parse(startDateExpression.valueOf(holidayRequest));
Date endDate = dateFormat.parse(endDateExpression.valueOf(holidayRequest));
String name = nameExpression.valueOf(holidayRequest);

humanResourceService.bookHoliday(startDate, endDate, name);
return null;

}
}

❶ The HolidayEndpoint requires the HumanResourceService business service to operate, so we inject the
dependency via the constructor. Next, we set up XPath expressions using the JDOM API. There are three
expressions: //hr:StartDate for extracting the <StartDate> text value, //hr:EndDate for extracting the
end date and concat(//hr:FirstName,' ',//hr:LastName) for extracting and concatenating the names
of the employee.

❷ The invokeInternal(..) method is a template method, which gets passed with the <HolidayRequest/>

element from the incoming XML message. We use the XPath expressions to extract the string values from
the XML messages, and convert these values to Date objects using a SimpleDateFormat. With these
values, we invoke a method on the business service. Typically, this will result in a database transaction
being started, and some records being altered in the database. Finally, we return null, which indicates to
Spring-WS that we do not want to send a response message. If we wanted a response message, we could
have returned a JDOM Element that represents the payload of the response message.

Writing Contract-First Web Services

Spring-WS (1.0.4) 14

http://www.jdom.org
http://www.w3schools.com/xpath/

Using JDOM is just one of the options to handle the XML: other options include DOM, dom4j, XOM, SAX,
and StAX, but also marshalling techniques like JAXB, Castor, XMLBeans, JiBX, and XStream. We chose
JDOM because it gives us access to the raw XML, and because it is based on classes (not interfaces and factory
methods as with W3C DOM and dom4j), which makes the code less verbose. We use XPath because it is less
fragile than marshalling technologies: we don't care for strict schema conformance, as long as we can find the
dates and the name.

Because we use JDOM, we must add some dependencies to the Maven pom.xml, which is in the root of our
project directory. Here is the relevant section of the POM:

<dependencies>
<dependency>

<groupId>org.springframework.ws</groupId>
<artifactId>spring-ws-core</artifactId>
<version>1.0.4</version>

</dependency>
<dependency>

<groupId>jdom</groupId>
<artifactId>jdom</artifactId>
<version>1.0</version>

</dependency>
<dependency>

<groupId>jaxen</groupId>
<artifactId>jaxen</artifactId>
<version>1.1</version>

</dependency>
<dependency>

<groupId>javax.xml.soap</groupId>
<artifactId>saaj-api</artifactId>
<version>1.3</version>
<scope>runtime</scope>

</dependency>
<dependency>

<groupId>com.sun.xml.messaging.saaj</groupId>
<artifactId>saaj-impl</artifactId>
<version>1.3</version>
<scope>runtime</scope>

</dependency>
<dependencies>

Here is how we would configure these classes in our spring-ws-servlet.xml Spring XML configuration file:

<beans xmlns="http://www.springframework.org/schema/beans">

<bean id="holidayEndpoint" class="com.mycompany.hr.ws.HolidayEndpoint">
<constructor-arg ref="hrService"/>

</bean>

<bean id="hrService" class="com.mycompany.hr.service.StubHumanResourceService"/>

</beans>

3.6.2. Routing the Message to the Endpoint

Now that we have written an endpoint that handles the message, we must define how incoming messages are
routed to that endpoint. In Spring-WS, this is the responsibility of an EndpointMapping. In this tutorial, we will
route messages based on their content, by using a PayloadRootQNameEndpointMapping. Here is how we
configure a PayloadRootQNameEndpointMapping in spring-ws-servlet.xml:

<bean class="org.springframework.ws.server.endpoint.mapping.PayloadRootQNameEndpointMapping">
<property name="mappings">

<props>
<prop key="{http://mycompany.com/hr/schemas}HolidayRequest">holidayEndpoint</prop>

</props>

Writing Contract-First Web Services

Spring-WS (1.0.4) 15

</property>
<property name="interceptors">

<bean class="org.springframework.ws.server.endpoint.interceptor.PayloadLoggingInterceptor"/>
</property>

</bean>

This means that whenever an XML message is received with the namespace
http://mycompany.com/hr/schemas and the HolidayRequest local name, it will be routed to the
holidayEndpoint. (It also adds a PayloadLoggingInterceptor, that dumps incoming and outgoing messages
to the log.)

3.7. Publishing the WSDL

Finally, we need to publish the WSDL. As stated in Section 3.4, “Service contract”, we don't need to write a
WSDL ourselves; Spring-WS can generate one for us based on some conventions. Here is how we define the
generation:

<bean id="holiday" class="org.springframework.ws.wsdl.wsdl11.DynamicWsdl11Definition"> ❶
<property name="builder">
<bean class="org.springframework.ws.wsdl.wsdl11.builder.XsdBasedSoap11Wsdl4jDefinitionBuilder">
<property name="schema" value="/WEB-INF/hr.xsd"/> ❷
<property name="portTypeName" value="HumanResource"/> ❸
<property name="locationUri" value="http://localhost:8080/holidayService/"/> ❹
<property name="targetNamespace" value="http://mycompany.com/hr/definitions"/> ❺

</bean>
</property>

</bean>

❶ The bean id determines the URL where the WSDL can be retrieved. In this case, the bean id is holiday,
which means that the WSDL can be retrieved as holiday.wsdl in the servlet context. The full URL will
typically be http://localhost:8080/holidayService/holiday.wsdl.

❷ The schema property is set to the human resource schema we defined in Section 3.3, “Data Contract”: we
simply placed the schema in the WEB-INF directory of the application.

❸ Next, we define the WSDL port type to be HumanResource.
❹ We set the location where the service can be reached: http://localhost:8080/holidayService. For

development, this will suffice, but obviously we need to change this to
http://mycompany.com/humanresources when going live. A common way to to accomplish this is to use
a Spring PropertyPlaceholderConfigurer.

❺ Finally, we define the target namespace for the WSDL definition itself. Setting these is not required. If not
set, we give the WSDL the same namespace as the schema.

You can create a WAR file using mvn install. If you deploy the application (to Tomcat, Jetty, etc.), and point
your browser at this location, you will see the generated WSDL. This WSDL is ready to be used by clients,
such as soapUI, or other SOAP frameworks.

That concludes this tutorial. The tutorial code can be found in the full distribution of Spring-WS. The next step
would be to look at the echo sample application that is part of the distribution. After that, look at the airline
sample, which is a bit more complicated, because it uses JAXB, WS-Security, Hibernate, and a transactional
service layer. Finally, you can read the rest of the reference documentation.

Writing Contract-First Web Services

Spring-WS (1.0.4) 16

http://localhost:8080/holidayService/holiday.wsdl
http://www.soapui.org/

Part II. Reference
This part of the reference documentation details the various components that comprise Spring Web Services.
This includes a chapter that discusses the parts common to both client- and server-side WS, a chapter devoted
to the specifics of writing server-side Web services, a chapter about using Web services on the client-side, and
chapters on using WS-Security and Object/XML mapping.

Spring-WS (1.0.4) 17

Chapter 4. Shared components
In this chapter, we will explore the components which are shared between client- and server-side Spring-WS
development. These interfaces and classes represent the building blocks of Spring-WS, so it is important to
understand what they do, even if you do not use them directly.

4.1. Web service messages

4.1.1. WebServiceMessage

One of the core interfaces of Spring Web Services is the WebServiceMessage. This interface represents a
protocol-agnostic XML message. The interface contains methods that provide access to the payload of the
message, in the form of a javax.xml.transform.Source or a javax.xml.transform.Result. Source and
Result are tagging interfaces that represent an abstraction over XML input and output. Concrete
implementations wrap various XML representations, as indicated in the following table.

Source/Result implementation Wraps XML representation

javax.xml.transform.dom.DOMSource org.w3c.dom.Node

javax.xml.transform.dom.DOMResult org.w3c.dom.Node

javax.xml.transform.sax.SAXSource org.xml.sax.InputSource and
org.xml.sax.XMLReader

javax.xml.transform.sax.SAXResult org.xml.sax.ContentHandler

javax.xml.transform.stream.StreamSource java.io.File, java.io.InputStream, or
java.io.Reader

javax.xml.transform.stream.StreamResult java.io.File, java.io.OutputStream, or
java.io.Writer

In addition to reading from and writing to the payload, a Web service message can write itself to an output
stream.

4.1.2. SoapMessage

The SoapMessage is a subclass of WebServiceMessage. It contains SOAP-specific methods, such as getting
SOAP Headers, SOAP Faults, etc. Generally, your code should not be dependent on SoapMessage, because the
content of the SOAP Body can be obtained via getPayloadSource() and getPayloadResult() in the
WebServiceMessage. Only when it is necessary to perform SOAP-specific actions, such as adding a header, get
an attachment, etc., should you need to cast WebServiceMessage to SoapMessage.

4.1.3. Message Factories

Concrete message implementations are created by a WebServiceMessageFactory. This factory can create an
empty message, or read a message based on an input stream. There are two concrete implementations of
WebServiceMessageFactory; one is based on SAAJ, the SOAP with Attachments API for Java, the other based
on Axis 2's AXIOM, the AXis Object Model.

Spring-WS (1.0.4) 18

4.1.3.1. SaajSoapMessageFactory

The SaajSoapMessageFactory uses the SOAP with Attachments API for Java to create SoapMessage

implementations. SAAJ is part of J2EE 1.4, so it should be supported under most modern application servers.
Here is an overview of the SAAJ versions supplied by common application servers:

Application Server SAAJ Version

BEA WebLogic 8 1.1

BEA WebLogic 9 1.1/1.2a

IBM WebSphere 6 1.2

SUN Glassfish 1 1.3
a Weblogic 9 has a known bug in the SAAJ 1.2 implementation: it implement all the 1.2 interfaces, but throws a
UnsupportedOperationException when called. Spring Web Services has a workaround: it uses SAAJ 1.1 when operating on WebLogic 9.

Additionally, Java SE 6 includes SAAJ 1.3. You wire up a SaajSoapMessageFactory like so:

<bean id="messageFactory" class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory" />

Note

SAAJ is based on DOM, the Document Object Model. This means that all SOAP messages are
stored in memory. For larger SOAP messages, this may not be very performant. In that case, the
AxiomSoapMessageFactory might be more applicable.

4.1.3.2. AxiomSoapMessageFactory

The AxiomSoapMessageFactory uses the AXis 2 Object Model to create SoapMessage implementations.
AXIOM is based on StAX, the Streaming API for XML. StAX provides a pull-based mechanism for reading
XML messages, which can be more efficient for larger messages.

To increase reading performance on the AxiomSoapMessageFactory, you can set the payloadCaching property
to false (default is true). This will read the contents of the SOAP body directly from the stream. When this
setting is enabled, the payload can only be read once. This means that you have to make sure that any
preprocessing of the message does not consume it.

You use the AxiomSoapMessageFactory as follows:

<bean id="messageFactory" class="org.springframework.ws.soap.axiom.AxiomSoapMessageFactory">
<property name="payloadCaching" value="true"/>

</bean>

4.1.3.3. SOAP 1.1 or 1.2

Both the SaajSoapMessageFactory and the AxiomSoapMessageFactory have a soapVersion property, where
you can inject a SoapVersion constant. By default, the version is 1.1, but you an set it to 1.2 like so:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:util="http://www.springframework.org/schema/util"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

Shared components

Spring-WS (1.0.4) 19

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util-2.0.xsd">

<bean id="messageFactory" class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory">
<property name="soapVersion">

<util:constant static-field="org.springframework.ws.soap.SoapVersion.SOAP_12"/>
</property>

</bean>

</beans>

In the example above, we define a SaajSoapMessageFactory that only accepts SOAP 1.2 messages.

Caution

Even though both versions of SOAP are quite similar in format, the 1.2 version is not backwards
compatible with 1.1 because it uses a different XML namespace. Other major differences between
SOAP 1.1 and 1.2 include the different structure of a Fault, and the fact that SOAPAction HTTP
headers are deprecated, which means that you cannot use the SoapActionEndpointMapping or the
SoapActionAnnotationMethodEndpointMapping.

One important thing to note with SOAP version numbers, or WS-* specification version numbers
in general, is that the latest version of a specification is generally not the most popular version. For
SOAP, this means that currently, the best version to use is 1.1. Version 1.2 might become more
popular in the future, but currently 1.1 is the safest bet.

4.1.4. MessageContext

Typically, messages come in pairs: a request and a response. A request is created on the client-side, which is
sent over some transport to the server-side, where a response is generated. This response gets sent back to the
client, where it is read.

In Spring Web Services, such a conversation is contained in a MessageContext, which has properties to get
request and response messages. On the client-side, the message context is created by the WebServiceTemplate.
On the server-side, the message context is read from the transport-specific input stream. For example, in HTTP,
it is read from the HttpServletRequest and the response is written back to the HttpServletResponse.

4.2. TransportContext

One of the key properties of the SOAP protocol is that it tries to be transport-agnostic. This is why, for
instance, Spring-WS does not support mapping messages to endpoints by HTTP request URL, but rather by
mesage content.

However, sometimes it is necessary to get access to the underlying transport, either on the client or server side.
For this, Spring Web Services has the TransportContext. The transport context allows access to the underlying
WebServiceConnection, which typically is a HttpServletConnection on the server side; or a
HttpUrlConnection or CommonsHttpConnection on the client side. For example, you can obtain the IP address
of the current request in a server-side endpoint or interceptor like so:

TransportContext context = TransportContextHolder.getTransportContext();
HttpServletConnection connection = (HttpServletConnection)context.getConnection();
HttpServletRequest request = connection.getHttpServletRequest();
String ipAddress = request.getRemoteAddr();

Shared components

Spring-WS (1.0.4) 20

4.3. Handling XML With XPath

One of the best ways to handle XML is to use XPath. Quoting [effective-xml], item 35:

XPath is a fourth generation declarative language that allows you to specify which nodes you
want to process without specifying exactly how the processor is supposed to navigate to those
nodes. XPath's data model is very well designed to support exactly what almost all developers
want from XML. For instance, it merges all adjacent text including that in CDATA sections,
allows values to be calculated that skip over comments and processing instructions` and
include text from child and descendant elements, and requires all external entity references to
be resolved. In practice, XPath expressions tend to be much more robust against unexpected
but perhaps insignificant changes in the input document.

—Elliotte Rusty Harold

Spring Web Services has two ways to use XPath within your application: the faster XPathExpression or the
more flexible XPathTemplate.

4.3.1. XPathExpression

The XPathExpression is an abstraction over a compiled XPath expression, such as the Java 5
javax.xml.xpath.XPathExpression, or the Jaxen XPath class. To construct an expression in an application
context, there is the XPathExpressionFactoryBean. Here is an example which uses this factory bean:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<bean id="nameExpression" class="org.springframework.xml.xpath.XPathExpressionFactoryBean">
<property name="expression" value="/Contacts/Contact/Name"/>

</bean>

<bean id="myEndpoint" class="sample.MyXPathClass">
<constructor-arg ref="nameExpression"/>

</bean>

</beans>

The expression above does not use namespaces, but we could set those using the namespaces property of the
factory bean. The expression can be used in the code as follows:

package sample;

public class MyXPathClass {

private final XPathExpression nameExpression;

public MyXPathClass(XPathExpression nameExpression) {
this.nameExpression = nameExpression;

}

public void doXPath(Document document) {
String name = nameExpression.evaluateAsString(document.getDocumentElement());
System.out.println("Name: " + name);

}

}

For a more flexible approach, you can use a NodeMapper, which is similar to the RowMapper in Spring's JDBC

Shared components

Spring-WS (1.0.4) 21

support. The following example shows how we can use it:

package sample;

public class MyXPathClass {

private final XPathExpression contactExpression;

public MyXPathClass(XPathExpression contactExpression) {
this.contactExpression = contactExpression;

}

public void doXPath(Document document) {
List contacts = nameExpression.evaluate(requestElement,

new NodeMapper() {
public Object mapNode(Node node, int nodeNum) throws DOMException {

Element contactElement = (Element) node;
Element nameElement = (Element) contactElement.getElementsByTagName("Name").item(0);
Element phoneElement = (Element) contactElement.getElementsByTagName("Phone").item(0);
return new Contact(nameElement.getTextContent(), phoneElement.getTextContent());

}
});

// do something with list of Contact objects
}

}

Similar to mapping rows in Spring JDBC's RowMapper, each result node is mapped using an anonymous inner
class. In this case, we create a Contact object, which we use later on.

4.3.2. XPathTemplate

The XPathExpression only allows you to evaluate a single, pre-compiled expression. A more flexible, though
slower, alternative is the XpathTemplate. This class follows the common template pattern used throughout
Spring (JdbcTemplate, JmsTemplate, etc.). Here is an example:

package sample;

public class MyXPathClass {

private XPathOperations template = new Jaxp13XPathTemplate();

public void doXPath(Source source) {
String name = template.evaluateAsString("/Contacts/Contact/Name", request);
// do something with name

}

}

Shared components

Spring-WS (1.0.4) 22

Chapter 5. Creating a Web service with Spring-WS

5.1. Introduction

Spring-WS's server-side support is designed around a MessageDispatcher that dispatches incoming messages
to endpoints, with configurable endpoint mappings, response generation, and endpoint interception. The
simplest endpoint is a PayloadEndpoint, which just offers the Source invoke(Source request) method. You
are of course free to implement this interface directly, but you will probably prefer to extend one of the
included abstract implementations such as AbstractDomPayloadEndpoint, AbstractSaxPayloadEndpoint, and
AbstractMarshallingPayloadEndpoint. Alternatively, there is a endpoint development that uses Java 5
annotations, such as @Endpoint for marking a POJO as endpoint, and marking a method with @PayloadRoot or
@SoapAction.

Spring-WS's XML handling is extremely flexible. An endpoint can choose from a large amount of XML
handling libraries supported by Spring-WS, including the DOM family (W3C DOM, JDOM, dom4j, and
XOM), SAX or StAX for faster performance, XPath to extract information from the message, or even
marshalling techniques (JAXB, Castor, XMLBeans, JiBX, or XStream) to convert the XML to objects and
vice-versa.

5.2. The MessageDispatcher

The server-side of Spring-WS is designed around a central class that dispatches incoming XML messages to
endpoints. Spring-WS's MessageDispatcher is extremely flexible, allowing you to use any sort of class as an
endpoint, as long as it can be configured in the Spring IoC container. In a way, the message dispatcher
resembles Spring's DispatcherServlet, the “Front Controller” used in Spring Web MVC.

The processing and dispatching flow of the MessageDispatcher is illustrated in the following sequence
diagram.

The request processing workflow in Spring Web Services

When a MessageDispatcher is set up for use and a request comes in for that specific dispatcher, said
MessageDispatcher starts processing the request. The list below describes the complete process a request goes
through when handled by a MessageDispatcher:

Spring-WS (1.0.4) 23

1. An appropriate endpoint is searched for using the configured EndpointMapping(s). If an endpoint is found,
the invocation chain associated with the endpoint (preprocessors, postprocessors, and endpoints) will be
executed in order to create a response.

2. An appropriate adapter is searched for the endpoint. The MessageDispatcher delegates to this adapter to
invoke the endpoint.

3. If a response is returned, it is sent on its way. If no response is returned (which could be due to a pre- or
post-processor intercepting the request, for example, for security reasons), no response is sent.

Exceptions that are thrown during handling of the request get picked up by any of the endpoint exception
resolvers that are declared in the application context. Using these exception resolvers allows you to define
custom behaviors (such as returning a SOAP Fault) in case such exceptions get thrown.

The MessageDispatcher has several properties, for setting endpoint adapters, mappings, exception resolvers.
However, setting these properties is not required, since the dispatcher will automatically detect all of these
types that are registered in the application context. Only when detection needs to be overriden, should these
properties be set.

The message dispatcher operates on a message context, and not transport-specific input stream and output
stream. As a result, transport specific requests need to read into a MessageContext. For HTTP, this is done with
a WebServiceMessageReceiverHandlerAdapter, which is a Spring Web HandlerInterceptor, so that the
MessageDispatcher can be wired in a standard DispatcherServlet. There is a more convenient way to do this,
however, which is shown in the next section.

5.2.1. MessageDispatcherServlet

The MessageDispatcherServlet is a standard Servlet which conveniently extends from the standard Spring
Web DispatcherServlet, and wraps a MessageDispatcher. As such, it combines the attributes of these into
one: as a MessageDispatcher, it follows the same request handling flow as described in the previous section.
As a servlet, the MessageDispatcherServlet is configured in the web.xml of your web application. Requests
that you want the MessageDispatcherServlet to handle will have to be mapped using a URL mapping in the
same web.xml file. This is standard Java EE servlet configuration; an example of such a
MessageDispatcherServlet declaration and mapping can be found below.

<web-app>

<servlet>
<servlet-name>spring-ws</servlet-name>
<servlet-class>org.springframework.ws.transport.http.MessageDispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>spring-ws</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

</web-app>

In the example above, all requests will be handled by the 'spring-ws' MessageDispatcherServlet. This is
only the first step in setting up Spring Web Services, because the various component beans used by the
Spring-WS framework also need to be configured; this configuration consists of standard Spring XML <bean/>

definitions. Because the MessageDispatcherServlet is a standard Spring DispatcherServlet, it will look for
a file named [servlet-name]-servlet.xml in the WEB-INF directory of your web application and create the
beans defined there in a Spring container. In the example above, that means that it looks for

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 24

/WEB-INF/spring-ws-servlet.xml'. This file will contain all of the SWS-specific beans such as endpoints,
marshallers and suchlike.

5.2.1.1. Automatic WSDL exposure

The MessageDispatcherServlet will automatically detect any WsdlDefinition beans defined in it's Spring
container. All such WsdlDefinition beans that are detected will also be exposed via a
WsdlDefinitionHandlerAdapter; this is a very convenient way to expose your WSDL to clients simply by just
defining some beans.

By way of an example, consider the following bean definition, defined in the Spring-WS framework's
configuration file ('/WEB-INF/[servlet-name]-servlet.xml'). Take notice of the value of the bean's 'id'
attribute, because this will be used when exposing the WSDL.

<bean id="orders" class="org.springframework.ws.wsdl.wsdl11.SimpleWsdl11Definition">
<constructor-arg value="/WEB-INF/wsdl/Orders.wsdl"/>

</bean>

The WSDL defined in the 'Orders.wsdl' file can then be accessed via GET requests to a URL of the following
form (substitute the host, port and servlet context path as appropriate).

http://localhost:8080/spring-ws/orders.wsdl

Another cool feature of the MessageDispatcherServlet (or more correctly the
WsdlDefinitionHandlerAdapter) is that it is able to transform the value of the 'location' of all the WSDL that
it exposes to reflect the URL of the incoming request.

Please note that this 'location' transformation feature is off by default.To switch this feature on, you just need
to specify an initialization parameter to the MessageDispatcherServlet, like so:

<web-app>

<servlet>
<servlet-name>spring-ws</servlet-name>
<servlet-class>org.springframework.ws.transport.http.MessageDispatcherServlet</servlet-class>
<init-param>

<param-name>transformWsdlLocations</param-name>
<param-value>true</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>spring-ws</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

</web-app>

Consult the class-level Javadoc on the WsdlDefinitionHandlerAdapter class which explains the whole
transformation process in more detail.

5.2.1.1.1. Exposing a static WSDL

As indicated above, a static WSDL file can be exposed by using the SimpleWsdl11Definition. Simply wire it
up, and give it a Resource for the wsdl property, or use the contructor, as shown in the example above.

5.2.1.1.2. Dynamically creating a WSDL from an XSD

As shown in Section 3.7, “Publishing the WSDL”, Spring Web Services can generate a WSDL file from a XSD

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 25

schema, using conventions. The next application context snippet shows how to create such a dynamic WSDL
file:

<bean id="holiday" class="org.springframework.ws.wsdl.wsdl11.DynamicWsdl11Definition">
<property name="builder">
<bean class="org.springframework.ws.wsdl.wsdl11.builder.XsdBasedSoap11Wsdl4jDefinitionBuilder">
<property name="schema" value="/WEB-INF/xsd/Orders.xsd"/>
<property name="portTypeName" value="Orders"/>
<property name="locationUri" value="http://localhost:8080/ordersService/"/>

</bean>
</property>

</bean>

The DynamicWsdl11Definition uses a Wsdl11DefinitionBuilder implementation to generate a WSDL the
first time it is requested. Typically, we use a XsdBasedSoap11Wsdl4jDefinitionBuilder, which builds a
WSDL from a XSD schema. This builder iterates over all element elements found in the schema, and creates a
message for elements that end with the defined request or response suffix. The default request suffix is
Request; the default response suffix is Response, though these can be changed by setting the requestSuffix and
responseSuffix properties, respectively. Next, the builder combines the request and response messages into a
WSDL operations, and builds a portType based on the operations.

For instance, if our Orders.xsd schema defines the GetOrdersRequest and GetOrdersResponse elements, the
XsdBasedSoap11Wsdl4jDefinitionBuilder will create a GetOrdersRequest and GetOrdersResponse message,
and a GetOrders operation, which is put in a Orders port type.

5.2.2. Wiring up Spring-WS in a DispatcherServlet

As an alternative to the MessageDispatcherServlet, you can wire up a MessageDispatcher in a standard,
Spring-Web MVC DispatcherServlet. By default, the DispatcherServlet can only delegate to Controllers,
but we can instruct it to delegate to a MessageDispatcher by adding a
WebServiceMessageReceiverHandlerAdapter to the servlet's web application context:

<beans>

<bean class="org.springframework.ws.transport.http.WebServiceMessageReceiverHandlerAdapter"/>

<bean class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
<property name="defaultHandler" ref="messageDispatcher"/>

</bean

<bean id="messageDispatcher" class="org.springframework.ws.server.MessageDispatcher"/>

...

<bean class="org.springframework.web.servlet.mvc.SimpleControllerHandlerAdapter"/>

Note that by explicitely adding the WebServiceMessageReceiverHandlerAdapter, the dispatcher servlet does
not load the default adapters, and is unable to handle standard Spring-MVC Controllers. Therefore, we add
the SimpleControllerHandlerAdapter at the end.

5.3. Endpoints

Endpoints are the central concept in Spring-WS's server-side support. Endpoints provide access to the
application behavior which is typically defined by a business service interface. An endpoint interprets the XML
request message and uses that input to invoke a method on the business service (typically). The result of that
service invocation is represented as a response message. Spring-WS has a wide variety of endpoints, using
various ways to handle the XML message, and to create a response.

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 26

The basis for most endpoints in Spring Web Services is the
org.springframework.ws.server.endpoint.PayloadEndpoint interface, the source code of which is listed
below.

public interface PayloadEndpoint {

/**
* Invokes an operation.
*/

Source invoke(Source request) throws Exception;
}

As you can see, the PayloadEndpoint interface defines a single method that is invoked with the XML payload
of a request (typically the contents of the SOAP Body, see Section 4.1.2, “SoapMessage”). The returned
Source, if any, is stored in the response XML message. While the PayloadEndpoint interface is quite abstract,
Spring-WS offers a lot of endpoint implementations out of the box that already contain a lot of the functionality
you might need. The PayloadEndpoint interface just defines the most basic responsibility required of every
endpoint; namely handling a request and returning a response.

Alternatively, there is the MessageEndpoint, which operates on a whole MessageContext rather than just the
payload. Typically, your code should not be dependent on messages, because the payload should contain the
information of interest. Only when it is necessary to perform actions on the message as a whole, such as adding
a SOAP header, get an attachment, and so forth, should you need to implement MessageEndpoint, though these
actions are usually performed in an endpoint interceptor.

5.3.1. AbstractDomPayloadEndpoint and other DOM endpoints

One of the most basic ways to handle the incoming XML payload is by using a DOM (Document Object
Model) API. By extending from AbstractDomPayloadEndpoint, you can use the org.w3c.dom.Element and
related classes to handle the request and create the response. When using the AbstractDomPayloadEndpoint as
the baseclass for your endpoints you only have to override the invokeInternal(Element, Document) method,
implement your logic, and return an Element if a response is necessary. Here is a short example consisting of a
class and a declaration in the application context.

package samples;

public class SampleEndpoint extends AbstractDomPayloadEndpoint {

private String responseText;

public SampleEndpoint(String responseText) {
this.responseText = responseText;

}

protected Element invokeInternal(
Element requestElement,
Document document) throws Exception {

String requestText = requestElement.getTextContent();
System.out.println("Request text: " + requestText);

Element responseElement = document.createElementNS("http://samples", "response");
responseElement.setTextContent(responseText);
return responseElement;

}
}

<bean id="sampleEndpoint" class="samples.SampleEndpoint">
<constructor-arg value="Hello World!"/>

</bean>

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 27

The above class and the declaration in the application context are all you need besides setting up an endpoint
mapping (see the section entitled Section 5.4, “Endpoint mappings”) to get this very simple endpoint working.
The SOAP message handled by this endpoint will look something like:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<request xmlns="http://samples">
Hello

</request>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Though it could also handle the following Plain Old XML (POX) message, since we are only working on the
payload of the message, and do not care whether it is SOAP or POX.

<request xmlns="http://samples">
Hello

</request>

The SOAP response looks like:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<response xmlns="http://samples">
Hello World!

</response>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Besides the AbstractDomPayloadEndpoint, which uses W3C DOM, there are other base classes which use
alternative DOM APIs. Spring Web Services supports most DOM APIs, so that you can use the one you are
familiar with. For instance, the AbstractJDomPayloadEndpoint allows you to use JDOM, and the
AbstractXomPayloadEndpoint uses XOM to handle the XML. All of these endpoints have an invokeInternal

method similar to above. Also, consider using Spring-WS's XPath support to extract the information you need
out of the payload. (See the section entitled Section 4.3, “Handling XML With XPath” for details.)

5.3.2. AbstractMarshallingPayloadEndpoint

Rather than handling XML directly using DOM, you can use marshalling to convert the payload of the XML
message into a Java Object. Spring Web Services offers the AbstractMarshallingPayloadEndpoint for this
purpose, which is built on the marshalling abstraction described in Chapter 8, Marshalling XML using O/X
Mappers. The AbstractMarshallingPayloadEndpoint has two properties: marshaller and unmarshaller, in
which you can inject in the constructor or by setters.

When extending from AbstractMarshallingPayloadEndpoint, you have to override the
invokeInternal(Object) method, where the passed Object represents the unmarshalled request payload, and
return an Object that will be marshalled into the response payload. Here is an example:

package samples;

import org.springframework.oxm.Marshaller;
import org.springframework.oxm.Unmarshaller;

public class MarshallingOrderEndpoint extends AbstractMarshallingPayloadEndpoint{

private final OrderService orderService;

public SampleMarshallingEndpoint(OrderService orderService, Marshaller marshaller) {
super(marshaller);
this.orderService = orderService;

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 28

}

protected Object invokeInternal(Object request) throws Exception {
OrderRequest orderRequest = (OrderRequest) request;
Order order = orderService.getOrder(orderRequest.getId());
return order;

}
}

<beans>
<bean id="orderEndpoint" class="samples.MarshallingOrderEndpoint">

<constructor-arg ref="orderService"/>
<constructor-arg ref="marshaller"/>

</bean>

<bean id="marshaller" class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
<property name="classesToBeBound">

<list>
<value>samples.OrderRequest</value>
<value>samples.Order</value>

</list>
</property>

</bean>

<bean id="orderService" class="samples.DefaultOrderService"/>

<!-- Other beans, such as the endpoint mapping -->
</beans>

In this sample, we configure a Jaxb2Marshaller for the OrderRequest and Order classes, and inject that
marshaller together with the DefaultOrderService into our endpoint. This business service is not shown, but it
is a normal transactional service, probably using DAOs to obtain data from a database. In the invokeInternal

method, we cast the request object to an OrderRequest object, which is the JAXB object representing the
payload of the request. Using the identifier of that request, we obtain an order from our business service and
return it. The returned object is marshalled into XML, and used as the payload of the response message. The
SOAP request handled by this endpoint will look like:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<orderRequest xmlns="http://samples" id="42"/>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The resulting response will be something like:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<order xmlns="http://samples" id="42">
<item id="100">

<quantity>1</quantity>
<price>20.0</price>

</item>
<item id="101">

<quantity>1</quantity>
<price>10.0</price>

</item>
</order>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Instead of JAXB 2, we could have used any of the other marshallers described in Chapter 8, Marshalling XML
using O/X Mappers. The only thing that would change in the above example is the configuration of the
marshaller bean.

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 29

5.3.3. @Endpoint

The previous two programming models were based on inheritance, and handled individual XML messages.
Spring Web Services offer another endpoint with which you can aggregate multiple handling into one
controller, thus grouping functionality together. This model is based on annotations, so you can use it only with
Java 5 and higher. Here is an example that uses the same marshalled objects as above:

package samples;

import org.springframework.ws.server.endpoint.annotation.Endpoint;
import org.springframework.ws.server.endpoint.annotation.PayloadRoot;

@Endpoint
public class AnnotationOrderEndpoint {

private final OrderService orderService;

public AnnotationOrderEndpoint(OrderService orderService) {
this.orderService = orderService;

}

@PayloadRoot(localPart = "orderRequest", namespace = "http://samples")
public Order getOrder(OrderRequest orderRequest) {

return orderService.getOrder(orderRequest.getId());
}

@PayloadRoot(localPart = "order", namespace = "http://samples")
public void order(Order order) {

orderService.createOrder(order);
}

}

By annotating the class with @Endpoint, you mark it as a Spring-WS endpoint. Because the endpoint class can
have multiple request handling methods, we need to instruct Spring-WS which method to invoke for which
request. This is done using the @PayloadRoot annotation: the getOrder method will be invoked for requests
with a orderRequest local name and a http://samples namespace URI; the order method for requests with a
order local name. For more information about these annotations, refer to Section 5.4.3,
“MethodEndpointMapping”. We also need to configure Spring-WS to support the JAXB objects OrderRequest

and Order by defining a Jaxb2Marshaller:

<beans>

<bean id="orderEndpoint" class="samples.AnnotationOrderEndpoint">
<constructor-arg ref="orderService"/>

</bean>

<bean id="orderService" class="samples.DefaultOrderService"/>

<bean class="org.springframework.ws.server.endpoint.adapter.GenericMarshallingMethodEndpointAdapter">
<constructor-arg ref="marshaller"/>

</bean>

<bean id="marshaller" class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
<property name="classesToBeBound">

<list>
<value>samples.OrderRequest</value>
<value>samples.Order</value>

</list>
</property>

</bean>

<bean class="org.springframework.ws.server.endpoint.mapping.PayloadRootAnnotationMethodEndpointMapping"/>

</beans>

The GenericMarshallingMethodEndpointAdapter converts the incoming XML messages to marshalled
objects used as parameters and return value; the PayloadRootAnnotationMethodEndpointMapping is the

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 30

mapping that detects and handles the @PayloadRoot annotations.

5.3.3.1. @XPathParam

As an alternative to using marshalling, we could have used XPath to extract the information out of the
incoming XML request. Spring-WS offers another annotation for this purpose: @XPathParam. You simply
annotate one or more method parameter with this annotation (each), and each such annotated parameter will be
bound to the evaluation of that annotation. Here is an example:

package samples;

import javax.xml.transform.Source;

import org.springframework.ws.server.endpoint.annotation.Endpoint;
import org.springframework.ws.server.endpoint.annotation.PayloadRoot;
import org.springframework.ws.server.endpoint.annotation.XPathParam;

@Endpoint
public class AnnotationOrderEndpoint {

private final OrderService orderService;

public AnnotationOrderEndpoint(OrderService orderService) {
this.orderService = orderService;

}

@PayloadRoot(localPart = "orderRequest", namespace = "http://samples")
public Source getOrder(@XPathParam("/s:orderRequest/@id") double orderId) {

Order order = orderService.getOrder((int) orderId);
// create Source from order and return it

}

}

Since we use the prefix 's' in our XPath expression, we must bind it to the http://samples namespace:

<beans>
<bean id="orderEndpoint" class="samples.AnnotationOrderEndpoint">

<constructor-arg ref="orderService"/>
</bean>

<bean id="orderService" class="samples.DefaultOrderService"/>

<bean class="org.springframework.ws.server.endpoint.mapping.PayloadRootAnnotationMethodEndpointMapping"/>

<bean class="org.springframework.ws.server.endpoint.adapter.XPathParamAnnotationMethodEndpointAdapter">
<property name="namespaces">

<props>
<prop key="s">http://samples</prop>

</props>
</property>

</bean>

</beans>

Using the @XPathParam, you can bind to all the data types supported by XPath:

• boolean or Boolean

• double or Double

• String

• Node

• NodeList

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 31

5.4. Endpoint mappings

The endpoint mapping is responsible for mapping incoming messages to appropriate endpoints. There are some
endpoint mappings you can use out of the box, for example, the PayloadRootQNameEndpointMapping or the
SoapActionEndpointMapping, but let's first examine the general concept of an EndpointMapping.

An EndpointMapping delivers a EndpointInvocationChain, which contains the endpoint that matches the
incoming request, and may also contain a list of endpoint interceptors that will be applied to the request and
response. When a request comes in, the MessageDispatcher will hand it over to the endpoint mapping to let it
inspect the request and come up with an appropriate EndpointInvocationChain. Then the MessageDispatcher

will invoke the endpoint and any interceptors in the chain.

The concept of configurable endpoint mappings that can optionally contain interceptors (which can manipulate
the request or the response, or both) is extremely powerful. A lot of supporting functionality can be built into
custom EndpointMappings. For example, there could be a custom endpoint mapping that chooses an endpoint
not only based on the contents of a message, but also on a specific SOAP header (or indeed multiple SOAP
headers).

Most endpoint mappings inherit from the AbstractEndpointMapping, which offers an 'interceptors' property,
which is the list of interceptors to use. EndpointInterceptors are discussed in Section 5.4.4, “Intercepting
requests - the EndpointInterceptor interface”. Additionally, there is the 'defaultEndpoint', which is the default
endpoint to use, when this endpoint mapping does not result in a matching endpoint.

5.4.1. PayloadRootQNameEndpointMapping

The PayloadRootQNameEndpointMapping will use the qualified name of the root element of the request payload
to determine the endpoint that handles it. A qualified name consists of a namespace URI and a local part, the
combination of which should be unique within the mapping. Here is an example:

<beans>

<!-- no 'id' required, EndpointMapping beans are automatically detected by the MessageDispatcher -->
<bean id="endpointMapping" class="org.springframework.ws.server.endpoint.mapping.PayloadRootQNameEndpointMapping">

<property name="mappings">
<props>

<prop key="{http://samples}orderRequest">getOrderEndpoint</prop>
<prop key="{http://samples}order">createOrderEndpoint</prop>

</props>
</property>

</bean>

<bean id="getOrderEndpoint" class="samples.GetOrderEndpoint">
<constructor-arg ref="orderService"/>

</bean>

<bean id="createOrderEndpoint" class="samples.CreateOrderEndpoint">
<constructor-arg ref="orderService"/>

</bean>
<beans>

The qualified name is expressed as { + namespace URI + } + local part. Thus, the endpoint mapping above
routes requests for which have a payload root element with namespace http://samples and local part
orderRequest to the 'getOrderEndpoint'. Requests with a local part order will be routed to the
'createOrderEndpoint'.

5.4.2. SoapActionEndpointMapping

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 32

Rather than base the routing on the contents of the message with the PayloadRootQNameEndpointMapping, you
can use the SOAPAction HTTP header to route messages. Every client sends this header when making a SOAP
request, and the header value used for a request is defined in the WSDL. By making the SOAPAction unique per
operation, you can use it as a discriminator. Here is an example:

<beans>
<bean id="endpointMapping" class="org.springframework.ws.soap.server.endpoint.mapping.SoapActionEndpointMapping">

<property name="mappings">
<props>

<prop key="http://samples/RequestOrder">getOrderEndpoint</prop>
<prop key="http://samples/CreateOrder">createOrderEndpoint</prop>

</props>
</property>

</bean>

<bean id="getOrderEndpoint" class="samples.GetOrderEndpoint">
<constructor-arg ref="orderService"/>

</bean>

<bean id="createOrderEndpoint" class="samples.CreateOrderEndpoint">
<constructor-arg ref="orderService"/>

</bean>
</beans>

The mapping above routes requests which have a SOAPAction of http://samples/RequestOrder to the
'getOrderEndpoint'. Requests with http://samples/CreateOrder will be routed to the
'createController'.

Caution

Note that using SOAP Action headers is SOAP 1.1-specific, so it cannot be used when using Plain
Old XML, nor with SOAP 1.2.

5.4.3. MethodEndpointMapping

As explained in Section 5.3.3, “@Endpoint”, the @Endpoint style allows you to handle multiple requests in one
endpoint class. This is the responsibility of the MethodEndpointMapping. Similar to the endpoint mapping
described above, this mapping determines which method is to be invoked for an incoming request message.

There are two endpoint mappings that can direct requests to methods: the
PayloadRootAnnotationMethodEndpointMapping and the SoapActionAnnotationMethodEndpointMapping,
both of which are very similar to their non-method counterparts described above.

The PayloadRootAnnotationMethodEndpointMapping uses the @PayloadRoot annotation, with the localPart

and namespace elements, to mark methods with a particular qualified name. Whenever a message comes in
which has this qualified name for the payload root element, the method will be invoked. For an example, see
above.

Alternatively, the SoapActionAnnotationMethodEndpointMapping uses the @SoapAction annotation to mark
methods with a particular SOAP Action. Whenever a message comes in which has this SOAPAction header, the
method will be invoked.

5.4.4. Intercepting requests - the EndpointInterceptor interface

The endpoint mapping mechanism has the notion of endpoint interceptors. These can be extremely useful when
you want to apply specific functionality to certain requests, for example, dealing with security-related SOAP

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 33

headers, or the logging of request and response message.

Interceptors located in the endpoint mapping must implement the EndpointInterceptor interface from the
org.springframework.ws.server package. This interface defines three methods, one that can be used for
handling the request message before the actual endpoint will be executed, one that can be used for handling a
normal response message, and one that can be used for handling fault messages, both of which will be called
after the endpoint is executed. These three methods should provide enough flexibility to do all kinds of pre- and
post-processing.

The handleRequest(..) method on the interceptor returns a boolean value. You can use this method to
interrupt or continue the processing of the invocation chain. When this method returns true, the endpoint
execution chain will continue, when it returns false, the MessageDispatcher interprets this to mean that the
interceptor itself has taken care of things and does not continue executing the other interceptors and the actual
endpoint in the invocation chain. The handleResponse(..) and handleFault(..) methods also have a boolean
return value. When these methods return false, the response will not be sent back to the client.

There are a number of standard EndpointInterceptor implementations you can use in your Web service.
Additionally, there is the XwsSecurityInterceptor, which is described in Section 7.2,
“XwsSecurityInterceptor”.

5.4.4.1. PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor

When developing a Web service, it can be useful to log the incoming and outgoing XML messages. SWS
facilitates this with the PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor classes. The
former logs just the payload of the message to the Commons Logging Log; the latter logs the entire SOAP
envelope, including SOAP headers. The following example shows you how to define them in an endpoint
mapping:

<beans>
<bean id="endpointMapping"

class="org.springframework.ws.server.endpoint.mapping.PayloadRootQNameEndpointMapping">
<property name="interceptors">

<list>
<ref bean="loggingInterceptor"/>

</list>
</property>
<property name="mappings">

<props>
<prop key="{http://samples}orderRequest">getOrderEndpoint</prop>
<prop key="{http://samples}order">createOrderEndpoint</prop>

</props>
</property>

</bean>

<bean id="loggingInterceptor"
class="org.springframework.ws.server.endpoint.interceptor.PayloadLoggingInterceptor"/>

</beans>

Both of these interceptors have two properties: 'logRequest' and 'logResponse', which can be set to false to
disable logging for either request or response messages.

5.4.4.2. PayloadValidatingInterceptor

One of the benefits of using a contract-first development style is that we can use the schema to validate
incoming and outgoing XML messages. Spring-WS facilitates this with the PayloadValidatingInterceptor.
This interceptor requires a reference to one or more W3C XML or RELAX NG schemas, and can be set to
validate requests or responses, or both.

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 34

Note

Note that request validation may sound like a good idea, but makes the resulting Web service very
strict. Usually, it is not really important whether the request validates, only if the endpoint can get
sufficient information to fullfill a request. Validating the response is a good idea, because the
endpoint should adhere to its schema. Remember Postel's Law: “Be conservative in what you do;
be liberal in what you accept from others.”

Here is an example that uses the PayloadValidatingInterceptor; in this example, we use the schema in
/WEB-INF/orders.xsd to validate the response, but not the request. Note that the
PayloadValidatingInterceptor can also accept multiple schemas using the schemas property.

<bean id="validatingInterceptor"
class="org.springframework.ws.soap.server.endpoint.interceptor.PayloadValidatingInterceptor">

<property name="schema" value="/WEB-INF/orders.xsd"/>
<property name="validateRequest" value="false"/>
<property name="validateResponse" value="true"/>

</bean>

5.4.4.3. PayloadTransformingInterceptor

To transform the payload to another XML format, Spring Web Services offers the
PayloadTransformingInterceptor. This endpoint interceptor is based on XSLT stylesheets, and is especially
useful when supporting multiple versions of a Web service: you can transform the older message format to the
newer format. Here is an example to use the PayloadTransformingInterceptor:

<bean id="transformingInterceptor"
class="org.springframework.ws.server.endpoint.interceptor.PayloadTransformingInterceptor">

<property name="requestXslt" value="/WEB-INF/oldRequests.xslt"/>
<property name="requestXslt" value="/WEB-INF/oldResponses.xslt"/>

</bean>

We are simply transforming requests using /WEB-INF/oldRequests.xslt, and response messages using
/WEB-INF/oldResponses.xslt. Note that, since endpoint interceptors are registered at the endpoint mapping
level, you can simply create a endpoint mapping that applies to the "old style" messages, and add the
interceptor to that mapping. Hence, the transformation will apply only to these "old style" message.

5.5. Handling Exceptions

Spring-WS provides EndpointExceptionResolvers to ease the pain of unexpected exceptions occurring while
your message is being processed by an endpoint which matched the request. Endpoint exception resolvers
somewhat resemble the exception mappings that can be defined in the web application descriptor web.xml.
However, they provide a more flexible way to handle exceptions. They provide information about what
endpoint was invoked when the exception was thrown. Furthermore, a programmatic way of handling
exceptions gives you many more options for how to respond appropriately. Rather than expose the innards of
your application by giving an exception and stack trace, you can handle the exception any way you want, for
example by returning a SOAP fault with a specific fault code and string.

Endpoint exception resolvers are automatically picked up by the MessageDispatcher, so no explicit
configuration is necessary.

Besides implementing the EndpointExceptionResolver interface, which is only a matter of implementing the
resolveException(MessageContext, endpoint, Exception) method, you may also use one of the provided

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 35

implementations. The simplest implementation is the SimpleSoapExceptionResolver, which just creates a
SOAP 1.1 Server or SOAP 1.2 Receiver Fault, and uses the exception message as the fault string. The
SimpleSoapExceptionResolver is the default, but it can be overriden by explicitly adding another resolver.

5.5.1. SoapFaultMappingExceptionResolver

The SoapFaultMappingExceptionResolver is a more sophisticated implementation. This resolver enables you
to take the class name of any exception that might be thrown and map it to a SOAP Fault, like so:

<beans>
<bean id="exceptionResolver"

class="org.springframework.ws.soap.server.endpoint.SoapFaultMappingExceptionResolver">
<property name="defaultFault" value="SERVER">
</property>
<property name="exceptionMappings">

org.springframework.oxm.ValidationFailureException=CLIENT,Invalid request
</property>

</bean>
</beans>

The key values and default endpoint use the format faultCode,faultString,locale, where only the fault
code is required. If the fault string is not set, it will default to the exception message. If the language is not set,
it will default to English. The above configuration will map exceptions of type ValidationFailureException

to a client-side SOAP Fault with a fault string "Invalid request", as can be seen in the following response:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>Invalid request</faultstring>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If any other exception occurs, it will return the default fault: a server-side fault with the exception message as
fault string.

5.5.2. SoapFaultAnnotationExceptionResolver

Finally, it is also possible to annotate exception classes with the @SoapFault annotation, to indicate the SOAP
Fault that should be returned whenever that exception is thrown. In order for these annotations to be picked up,
you need to add the SoapFaultAnnotationExceptionResolver to your application context. The elements of the
annotation include a fault code enumeration, fault string or reason, and language. Here is an example exception:

package samples;

import org.springframework.ws.soap.server.endpoint.annotation.FaultCode;
import org.springframework.ws.soap.server.endpoint.annotation.SoapFault;

@SoapFault(faultCode = FaultCode.SERVER)
public class MyBusinessException extends Exception {

public MyClientException(String message) {
super(message);

}
}

Whenever the MyBusinessException is thrown with the constructor string "Oops!" during endpoint invocation,
it will result in the following response:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 36

<SOAP-ENV:Body>
<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Oops!</faultstring>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Creating a Web service with Spring-WS

Spring-WS (1.0.4) 37

Chapter 6. Using Spring Web Services on the Client

6.1. Introduction

Spring-WS provides a client-side Web service API that allows for consistent, XML-driven access to Web
services. It also caters for the use of marshallers and unmarshallers so that your service tier code can deal
exclusively with Java objects.

The org.springframework.ws.client.core package provides the core functionality for using the client-side access
API. It contains template classes that simplify the use of Web services, much like the core Spring
JdbcTemplate does for JDBC. The design principle common to Spring template classes is to provide helper
methods to perform common operations, and for more sophisticated usage, delegate to user implemented
callback interfaces. The Web service template follows the same design. The classes offer various convenience
methods for the sending and receiving of XML messages, marshalling objects to XML before sending, and
allows for multiple transport options.

6.2. Using the client-side API

6.2.1. WebServiceTemplate

The WebServiceTemplate is the core class for client-side Web service access in Spring-WS. It contains
methods for sending Source objects, and receiving response messages as either Source or Result. Additionally,
it can marshal objects to XML before sending them across a transport, and unmarshal any response XML into
an object again.

6.2.1.1. URIs and Transports

The WebServiceTemplate class uses an URI as the message destination. You can either set a defaultUri
property on the template itself, or supply an URI explicitly when calling a method on the template. The URI
will be resolved into a WebServiceMessageSender, which is responsible for sending the XML message across a
transport layer. You can set one or more message senders using the messageSender or messageSenders
properties of the WebServiceTemplate class.

There are two implementations of the WebServiceMessageSender interface for sending messages via HTTP.
The default implementation is the HttpUrlConnectionMessageSender, which uses the facilities provided by
Java itself. The alternative is the CommonsHttpMessageSender, which uses the Jakarta Commons HttpClient.
Use the latter if you need more advanced and easy-to-use functionality (such as authentication, HTTP
connection pooling, and so forth).

6.2.1.2. Message factories

In addition to a message sender, the WebServiceTemplate requires a Web service message factory. There are
two message factories for SOAP: SaajSoapMessageFactory and AxiomSoapMessageFactory. If no message
factory is specified (via the 'messageFactory' property), Spring-WS will use the SaajSoapMessageFactory by
default.

6.2.2. Sending and receiving a WebServiceMessage

Spring-WS (1.0.4) 38

The WebServiceTemplate contains many convenience methods to send and receive web service messages.
There are methods that accept and return a Source and those that return a Result. Additionally, there are
methods which marshal and unmarshal objects to XML. Here is an example that sends a simple XML message
to a Web service.

import java.io.StringReader;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

import org.springframework.ws.WebServiceMessageFactory;
import org.springframework.ws.client.core.WebServiceTemplate;
import org.springframework.ws.transport.WebServiceMessageSender;

public class WebServiceClient {

private static final String MESSAGE = "<message xmlns=\"http://tempuri.org\">Hello Web Service World</message>";

private final WebServiceTemplate webServiceTemplate = new WebServiceTemplate();

public void setDefaultUri(String defaultUri) {
webServiceTemplate.setDefaultUri(defaultUri);

}

// send to the configured default URI
public void simpleSendAndReceive() {

StreamSource source = new StreamSource(new StringReader(MESSAGE));
StreamResult result = new StreamResult(System.out);
webServiceTemplate.sendSourceAndReceiveToResult(source, result);

}

// send to an explicit URI
public void customSendAndReceive() {

StreamSource source = new StreamSource(new StringReader(MESSAGE));
StreamResult result = new StreamResult(System.out);
webServiceTemplate.sendSourceAndReceiveToResult("http://localhost:8080/AnotherWebService", source, result);

}

}

<beans xmlns="http://www.springframework.org/schema/beans">

<bean id="webServiceClient" class="WebServiceClient">
<property name="defaultUri" value="http://localhost:8080/WebService"/>

</bean>

</beans>

The above example uses the WebServiceTemplate to send a hello world message to the web service located at
http://localhost:8080/WebService (in the case of the simpleSendAndReceive() method), and writes the
result to the console. The WebServiceTemplate is injected with the default URI, which is used because no URI
was supplied explicitly in the Java code.

Please note that the WebServiceTemplate class is threadsafe once configured (assuming that all of it's
dependencies are threadsafe too, which is the case for all of the dependencies that ship with Spring-WS), and so
multiple objects can use the same shared WebServiceTemplate instance if so desired. The WebServiceTemplate

exposes a zero argument constructor and messageFactory/messageSender bean properties which can be used
for constructing the instance (using a Spring container or plain Java code). Alternatively, consider deriving
from Spring-WS's WebServiceGatewaySupport convenience base class, which exposes convenient bean
properties to enable easy configuration. (You do not have to extend this base class... it is provided as a
convenience class only.)

6.2.3. Sending and receiving POJOs - marshalling and unmarshalling

Using Spring Web Services on the Client

Spring-WS (1.0.4) 39

In order to facilitate the sending of plain Java objects, the WebServiceTemplate has a number of send(..)

methods that take an Object as an argument for a message's data content. The method
marshalSendAndReceive(..) in the WebServiceTemplate class delegates the conversion of the request object
to XML to a Marshaller, and the conversion of the response XML to an object to an Unmarshaller. (For more
information about marshalling and unmarshaller, refer to Chapter 8, Marshalling XML using O/X Mappers.) By
using the marshallers, your application code can focus on the business object that is being sent or received and
not be concerned with the details of how it is represented as XML. In order to use the marshalling functionality,
you have to set a marshaller and unmarshaller with the marshaller/unmarshaller properties of the
WebServiceTemplate class.

6.2.4. WebServiceMessageCallback

To accommodate the setting of SOAP headers and other settings on the message, the
WebServiceMessageCallback interface gives you access to the message after it has been created, but before it
is sent. The example below demonstrates how to set the SOAP Action header on a message that is created by
marshalling an object.

public void marshalWithSoapActionHeader(MyObject o) {

webServiceTemplate.marshalSendAndReceive(o, new WebServiceMessageCallback() {

public void doInMessage(WebServiceMessage message) {
((SoapMessage)message).setSoapAction("http://tempuri.org/Action");

}
});

}

6.2.5. WebServiceMessageExtractor

The WebServiceMessageExtractor interface is a low-level callback interface that allows you to have full
control over the process to extract an Object from a received WebServiceMessage. The WebServiceTemplate

will invoke the extractData(..) method on a supplied WebServiceMessageExtractor while the underlying
connection to the serving resource is still open. The following example illustrates the
WebServiceMessageExtractor in action:

public void marshalWithSoapActionHeader(final Source s) {
final Transformer transformer = transformerFactory.newTransformer();
webServiceTemplate.sendAndReceive(new WebServiceMessageCallback() {

public void doInMessage(WebServiceMessage message) {
transformer.transform(s, message.getPayloadResult());

}, new WebServiceMessageExtractor() {

public Object extractData(WebServiceMessage message) throws IOException
// do your own transforms with message.getPayloadResult()
// or message.getPayloadSource()

}
});

}

Using Spring Web Services on the Client

Spring-WS (1.0.4) 40

Chapter 7. Securing your Web services with
Spring-WS

7.1. Introduction

This chapter explains how to add WS-Security aspects to your Web services. We will focus on the three
different areas of WS-Security, namely:

Authentication. This is the process of determining whether a principal is who they claim to be. In this context,
a "principal" generally means a user, device or some other system which can perform an action in your
application.

Digital signatures. The digital signature of a message is a piece of information based on both the document
and the signer's private key. It is created through the use of a hash function and a private signing function
(encrypting with the signer's private key).

Encryption and Decryption. Encryption is the process of transforming data into a form that is impossible to
read without the appropriate key. It is mainly used to keep information hidden from anyone for whom it is not
intended. Decryption is the reverse of encryption; it is the process of transforming of encrypted data back into
an readable form.

All of these three areas are implemented using the XwsSecurityInterceptor, which we will describe in
Section 7.2, “XwsSecurityInterceptor”.

Note

Note that WS-Security (especially encryption and signing) requires substantial amounts of
memory, and will also decrease performance. If performance is important to you, you might want
to consider not using WS-Security.

7.2. XwsSecurityInterceptor

The XwsSecurityInterceptor is an EndpointInterceptor (see Section 5.4.4, “Intercepting requests - the
EndpointInterceptor interface”) that is based on SUN's XML and Web Services Security package (XWSS).
This WS-Security implementation is part of the Java Web Services Developer Pack (Java WSDP).

Like any other endpoint interceptor, it is defined in the endpoint mapping (see Section 5.4, “Endpoint
mappings”). This means that you can be selective about adding WS-Security support: some endpoint mappings
require it, while others do not.

The XwsSecurityInterceptor requires a security policy file to operate. This XML file tells the interceptor
what security aspects to require from incoming SOAP messages, and what aspects to add to outgoing messages.
The basic format of the policy file will be explained in the following sections, but you can find a more in-depth
tutorial here. You can set the policy with the policyConfiguration property, which requires a Spring resource.
The policy file can contain multiple elements, e.g. require a username token on incoming messages, and sign all
outgoing messages. It contains a SecurityConfiguration element as root (not a JAXRPCSecurity element).

Additionally, the security interceptor requires one or more CallbackHandlers to operate. These handlers are
used to retrieve certificates, private keys, validate user credentials, etc. Spring-WS offers handlers for most

Spring-WS (1.0.4) 41

http://java.sun.com/webservices/
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp564887

common security concerns, e.g. authenticating against a Acegi authentication manager, signing outgoing
messages based on a X509 certificate. The following sections will indicate what callback handler to use for
which security concern. You can set the callback handlers using the callbackHandler or callbackHandlers

property.

Here is an example that shows how to wire the XwsSecurityInterceptor up:

<beans>
<bean id="wsSecurityInterceptor"

class="org.springframework.ws.soap.security.xwss.XwsSecurityInterceptor">
<property name="policyConfiguration" value="classpath:securityPolicy.xml"/>
<property name="callbackHandlers">

<list>
<ref bean="certificateHandler"/>
<ref bean="authenticationHandler"/>

</list>
</property>

</bean>
...

</beans>

This interceptor is configured using the securityPolicy.xml file on the classpath. It uses two callback
handlers which are defined further on in the file.

7.3. Keystores

For most cryptographic operations, you will use standard java.security.KeyStore objects. This includes
certificate verification, message signing, signature verification, and encryption, but excludes username and
time-stamp verification. This section aims to give you some background knowledge on keystores, and the Java
tools that you can use to store keys and certificates in a keystore file. This information is mostly not related to
Spring-WS, but to the general cryptographic features of Java.

The java.security.KeyStore class represents a storage facility for cryptographic keys and certificates. It can
contain three different sort of elements:

Private Keys. These keys are used for self-authentication. The private key is accompanied by certificate chain
for the corresponding public key. Within the field of WS-Security, this accounts to message signing and
message decryption.

Symmetric Keys. Symmetric (or secret) keys are used for message encryption and decryption as well. The
difference being that both sides (sender and recipient) share the same, secret key.

Trusted certificates. These X509 certificates are called a trusted certificate because the keystore owner trusts
that the public key in the certificates indeed belong to the owner of the certificate. Within WS-Security, these
certificates are used for certificate validation, signature verification, and encryption.

7.3.1. KeyTool

Supplied with your Java Virtual Machine is the keytool program, a key and certificate management utility. You
can use this tool to create new keystores, add new private keys and certificates to them, etc. It is beyond the
scope of this document to provide a full reference of the keytool command, but you can find a reference here,
or by giving the command keytool -help on the command line.

7.3.2. KeyStoreFactoryBean

Securing your Web services with Spring-WS

Spring-WS (1.0.4) 42

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html

To easily load a keystore using Spring configuration, you can use the KeyStoreFactoryBean. It has a resource
location property, which you can set to point to the path of the keystore to load. A password may be given to
check the integrity of the keystore data. If a password is not given, integrity checking is not performed.

<bean id="keyStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="password" value="password"/>
<property name="location" value="classpath:org/springframework/ws/soap/security/xwss/test-keystore.jks"/>

</bean>

Caution

If you don't specify the location property, a new, empty keystore will be created, which is most
likely not what you want.

7.3.3. KeyStoreCallbackHandler

To use the keystores within a XwsSecurityInterceptor, you will need to define a KeyStoreCallbackHandler.
This callback has three properties with type keystore: (keyStore, trustStore, and symmetricStore). The exact
stores used by the handler depend on the cryptographic operations that are to be performed by this handler. For
private key operation, the keyStore is used, for symmetric key operations the symmetricStore, and for
determining trust relationships, the trustStore. The following table indicates this:

Cryptographic operation Keystore used

Certificate validation first the keyStore, then the trustStore

Decryption based on private key keyStore

Decryption based on symmetric key symmetricStore

Encryption based on public key certificate trustStore

Encryption based on symmetric key symmetricStore

Signing keyStore

Signature verification trustStore

Additionally, the KeyStoreCallbackHandler has a privateKeyPassword property, which should be set to
unlock the private key(s) contained in the keyStore.

If the symmetricStore is not set, it will default to the keyStore. If the key or trust store is not set, the callback
handler will use the standard Java mechanism to load or create it. Refer to the JavaDoc of the
KeyStoreCallbackHandler to know how this mechanism works.

For instance, if you want to use the KeyStoreCallbackHandler to validate incoming certificates or signatures,
you would use a trust store, like so:

<beans>
<bean id="keyStoreHandler" class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

<property name="trustStore" ref="trustStore"/>
</bean>

<bean id="trustStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:truststore.jks"/>
<property name="password" value="changeit"/>

</bean>

Securing your Web services with Spring-WS

Spring-WS (1.0.4) 43

</beans>

If you want to use it to decrypt incoming certificates or sign outgoing messages, you would use a key store, like
so:

<beans>
<bean id="keyStoreHandler" class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

<property name="keyStore" ref="keyStore"/>
<property name="privateKeyPassword" value="changeit"/>

</bean>

<bean id="keyStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:keystore.jks"/>
<property name="password" value="changeit"/>

</bean>
</beans>

The following sections will indicate where the KeyStoreCallbackHandler can be used, and which properties to
set for particular cryptographic operations.

7.4. Authentication

As stated in the introduction, authentication is the task of determining whether a principal is who they claim to
be. Within WS-Security, authentication can take two forms: using a username and password token (using either
a plain text password or a password digest), or using a X509 certificate.

7.4.1. Plain Text Username Authentication

The simplest form of username authentication uses plain text passwords. In this scenario, the SOAP message
will contain a UsernameToken element, which itself contains a Username element and a Password element
which contains the plain text password. Plain text authentication can be compared to the Basic Authentication
provided by HTTP servers.

Warning

Note that plain text passwords are not very secure. Therefore, you should always add additional
security measures to your transport layer if you are using them (using HTTPS instead of plain
HTTP, for instance).

To require that every incoming message contains a UsernameToken with a plain text password, the security
policy file should contain a RequireUsernameToken element, with the passwordDigestRequired attribute set to
false. You can find a reference of possible child elements here.

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
...
<xwss:RequireUsernameToken passwordDigestRequired="false" nonceRequired="false"/>
...

</xwss:SecurityConfiguration>

If the username token is not present, the XwsSecurityInterceptor will return a SOAP Fault to the sender. If it
is present, it will fire a PasswordValidationCallback with a PlainTextPasswordRequest to the registered
handlers. Within Spring-WS, there are three classes which handle this particular callback.

Securing your Web services with Spring-WS

Spring-WS (1.0.4) 44

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

7.4.1.1. SimplePasswordValidationCallbackHandler

The simplest password validation handler is the SimplePasswordValidationCallbackHandler. This handler
validates passwords against an in-memory Properties object, which you can specify using the users property,
like so:

<bean id="passwordValidationHandler"
class="org.springframework.ws.soap.security.xwss.callback.SimplePasswordValidationCallbackHandler">
<property name="users">

<props>
<prop key="Bert">Ernie</prop>

</props>
</property>

</bean>

In this case, we are only allowing the user "Bert" to log in using the password "Ernie".

7.4.1.2. AcegiPlainTextPasswordValidationCallbackHandler

The AcegiPlainTextPasswordValidationCallbackHandler uses the excellent Acegi Security Framework to
authenticate users. It is beyond the scope of this document to describe Acegi, but suffice it to say that Acegi is a
full-fledged security framework. You can read more about Acegi in the Acegi reference documentation.

The AcegiPlainTextPasswordValidationCallbackHandler requires an Acegi AuthenticationManager to
operate. It uses this manager to authenticate against a UsernamePasswordAuthenticationToken that it creates.
If authentication is successful, the token is stored in the SecurityContextHolder. You can set the
authentication manager using the authenticationManager property:

<beans>
<bean id="acegiHandler"

class="org.springframework.ws.soap.security.xwss.callback.acegi.AcegiPlainTextPasswordValidationCallbackHandler">
<property name="authenticationManager" ref="authenticationManager"/>

</bean>

<bean id="authenticationManager" class="org.acegisecurity.providers.ProviderManager">
<property name="providers">

<bean class="org.acegisecurity.providers.dao.DaoAuthenticationProvider">
<property name="userDetailsService" ref="userDetailsService"/>

</bean>
</property>

</bean>

<bean id="userDetailsService" class="com.mycompany.app.dao.UserDetailService" />
...

</beans>

7.4.1.3. JaasPlainTextPasswordValidationCallbackHandler

The JaasPlainTextPasswordValidationCallbackHandler is based on the standard Java Authentication and
Authorization Service. It is beyond the scope of this document to provide a full introduction into JAAS, but
there is a good tutorial available.

The JaasPlainTextPasswordValidationCallbackHandler requires only a loginContextName to operate. It
creates a new JAAS LoginContext using this name, and handles the standard JAAS NameCallback and
PasswordCallback using the username and password provided in the SOAP message. This means that this
callback handler integrates with any JAAS LoginModule that fires these callbacks during the login() phase,
which is standard behavior.

Securing your Web services with Spring-WS

Spring-WS (1.0.4) 45

http://acegisecurity.org/
http://acegisecurity.org/docbook/acegi.html
http://java.sun.com/products/jaas/
http://java.sun.com/products/jaas/
http://www.javaworld.com/javaworld/jw-09-2002/jw-0913-jaas.html

You can wire up a JaasPlainTextPasswordValidationCallbackHandler as follows:

<bean id="jaasValidationHandler"
class="org.springframework.ws.soap.security.xwss.callback.jaas.JaasPlainTextPasswordValidationCallbackHandler">
<property name="loginContextName" value="MyLoginModule" />

</bean>

In this case, the callback handler uses the LoginContext named "MyLoginModule". This module should be
defined in your jaas.config file, as explained in the abovementioned tutorial.

7.4.2. Digest Username Authentication

When using password digests, the SOAP message also contains a UsernameToken element, which itself
contains a Username element and a Password element. The difference is that the password is not sent as plain
text, but as a digest. The recipient compares this digest to the digest he calculated from the known password of
the user, and if they are the same, the user is authenticated. It can be compared to the Digest Authentication
provided by HTTP servers.

To require that every incoming message contains a UsernameToken element with a password digest, the security
policy file should contain a RequireUsernameToken element, with the passwordDigestRequired attribute set to
true. Additionally, the nonceRequired should be set to true: You can find a reference of possible child
elements here.

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
...
<xwss:RequireUsernameToken passwordDigestRequired="true" nonceRequired="true"/>
...

</xwss:SecurityConfiguration>

If the username token is not present, the XwsSecurityInterceptor will return a SOAP Fault to the sender. If it
is present, it will fire a PasswordValidationCallback with a DigestPasswordRequest to the registered
handlers. Within Spring-WS, there are two classes which handle this particular callback.

7.4.2.1. SimplePasswordValidationCallbackHandler

The SimplePasswordValidationCallbackHandler can handle both plain text passwords as well as password
digests. It is described in Section 7.4.1.1, “SimplePasswordValidationCallbackHandler”.

7.4.2.2. AcegiDigestPasswordValidationCallbackHandler

The AcegiPlainTextPasswordValidationCallbackHandler requires an Acegi UserDetailService to operate.
It uses this service to retrieve the password of the user specified in the token. The digest of the password
contained in this details object is then compared with the digest in the message. If they are equal, the user has
successfully authenticated, and a UsernamePasswordAuthenticationToken is stored in the
SecurityContextHolder. You can set the service using the userDetailsService. Additionally, you can set a
userCache property, to cache loaded user details.

<beans>
<bean class="org.springframework.ws.soap.security.xwss.callback.acegi.AcegiDigestPasswordValidationCallbackHandler">

<property name="userDetailsService" ref="userDetailsService"/>
</bean>

<bean id="userDetailsService" class="com.mycompany.app.dao.UserDetailService" />
...

</beans>

Securing your Web services with Spring-WS

Spring-WS (1.0.4) 46

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

7.4.3. Certificate Authentication

A more secure way of authentication uses X509 certificates. In this scenerario, the SOAP message contains a
BinarySecurityToken, which contains a Base 64-encoded version of a X509 certificate. The recipient is used
by the recipient to authenticate. The certificate stored in the message is also used to sign the message (see
Section 7.5.1, “Verifying Signatures”).

To make sure that all incoming SOAP messages carry a BinarySecurityToken, the security policy file should
contain a RequireSignature element. This element can further carry other elements, which will be covered in
Section 7.5.1, “Verifying Signatures”. You can find a reference of possible child elements here.

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
...
<xwss:RequireSignature requireTimestamp="false">
...

</xwss:SecurityConfiguration>

When a message arrives that carries no certificate, the XwsSecurityInterceptor will return a SOAP Fault to
the sender. If it is present, it will fire a CertificateValidationCallback. There are three handlers within
Spring-WS which handle this callback for authentication purposes.

Note

In most cases, certificate authentication should be preceded by certificate validation, since you
only want to authenticate against valid certificates. Invalid certificates such as certificates for
which the expiration date has passed, or which are not in your store of trusted certificates, should
be ignored.

In Spring-WS terms, this means that the AcegiCertificateValidationCallbackHandler or
JaasCertificateValidationCallbackHandler should be preceded by
KeyStoreCallbackHandler. This can be accomplished by setting the order of the
callbackHandlers property in the configuration of the XwsSecurityInterceptor:

<bean id="wsSecurityInterceptor"
class="org.springframework.ws.soap.security.xwss.XwsSecurityInterceptor">
<property name="policyConfiguration" value="classpath:securityPolicy.xml"/>
<property name="callbackHandlers">

<list>
<ref bean="keyStoreHandler"/>
<ref bean="acegiHandler"/>

</list>
</property>

</bean>

Using this setup, the interceptor will first determine if the certificate in the message is valid using
the keystore, and then authenticate against it.

7.4.3.1. KeyStoreCallbackHandler

The KeyStoreCallbackHandler uses a standard Java keystore to validate certificates. This certificate validation
process consists of the following steps:

1. First, the handler will check whether the certificate is in the private keyStore. If it is, it is valid.

2. If the certificate is not in the private keystore, the handler will check whether the the current date and time

Securing your Web services with Spring-WS

Spring-WS (1.0.4) 47

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

are within the validity period given in the certificate. If they are not, the certificate is invalid; if it is, it will
continue with the final step.

3. Finally, a certification path for the certificate is created. This basically means that the handler will determine
whether the certificate has been issued by any of the certificate authorities in the trustStore. If a
certification path can be built successfully, the certificate is valid. Otherwise, the certificate is not.

To use the KeyStoreCallbackHandler for certificate validation purposes, you will most likely set only the
trustStore property:

<beans>
<bean id="keyStoreHandler" class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

<property name="trustStore" ref="trustStore"/>
</bean>

<bean id="trustStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:truststore.jks"/>
<property name="password" value="changeit"/>

</bean>
</beans>

Using this setup, the certificate that is to be validated must either be in the trust store itself, or the trust store
must contain a certificate authority that issued the certificate.

7.4.3.2. AcegiCertificateValidationCallbackHandler

The AcegiCertificateValidationCallbackHandler requires an Acegi AuthenticationManager to operate. It
uses this manager to authenticate against a X509AuthenticationToken that it creates. The configured
authentication manager is expected to supply a provider which can handle this token (usually an instance of
X509AuthenticationProvider). If authentication is succesful, the token is stored in the
SecurityContextHolder. You can set the authentication manager using the authenticationManager property:

<beans>
<bean id="acegiCertificateHandler"

class="org.springframework.ws.soap.security.xwss.callback.acegi.AcegiCertificateValidationCallbackHandler">
<property name="authenticationManager" ref="authenticationManager"/>

</bean>

<bean id="authenticationManager"
class="org.acegisecurity.providers.ProviderManager">
<property name="providers">

<bean class="org.acegisecurity.providers.x509.X509AuthenticationProvider">
<property name="x509AuthoritiesPopulator">

<bean class="org.acegisecurity.providers.x509.populator.DaoX509AuthoritiesPopulator">
<property name="userDetailsService" ref="userDetailsService"/>

</bean>
</property>

</bean>
</property>

</bean>

<bean id="userDetailsService" class="com.mycompany.app.dao.UserDetailService" />
...

</beans>

In this case, we are using a custom user details service to obtain authentication details based on the certificate.
Refer to the Acegi reference documentation for more information about authentication against X509
certificates.

7.4.3.3. JaasCertificateValidationCallbackHandler

Securing your Web services with Spring-WS

Spring-WS (1.0.4) 48

http://acegisecurity.org/docbook/acegi.html

The JaasCertificateValidationCallbackHandler requires a loginContextName to operate. It creates a new
JAAS LoginContext using this name and with the X500Principal of the certificate. This means that this
callback handler integrates with any JAAS LoginModule that handles X500 principals.

You can wire up a JaasCertificateValidationCallbackHandler as follows:

<bean id="jaasValidationHandler"
class="org.springframework.ws.soap.security.xwss.callback.jaas.JaasCertificateValidationCallbackHandler">
<property name="loginContextName">MyLoginModule</property>

</bean>

In this case, the callback handler uses the LoginContext named "MyLoginModule". This module should be
defined in your jaas.config file, and should be able to authenticate against X500 principals.

7.5. Digital Signatures

The digital signature of a message is a piece of information based on both the document and the signer's private
key. There are two main tasks related to signatures in WS-Security: verifying signatures and signing messages.

7.5.1. Verifying Signatures

Just like certificate-based authentication, a signed message contains a BinarySecurityToken, which contains
the certificate used to sign the message. Additionally, it contains a SignedInfo block, which indicates what part
of the message was signed.

To make sure that all incoming SOAP messages carry a BinarySecurityToken, the security policy file should
contain a RequireSignature element. It can also contain a SignatureTarget element, which specifies the
target message part which was expected to be signed, and various other subelements. You can also define the
private key alias to use, whether to use a symmetric instead of a private key, and many other properties. You
can find a reference of possible child elements here.

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
<xwss:RequireSignature requireTimestamp="false"/>

</xwss:SecurityConfiguration>

If the signature is not present, the XwsSecurityInterceptor will return a SOAP Fault to the sender. If it is
present, it will fire a SignatureVerificationKeyCallback to the registered handlers. Within Spring-WS, there
are is one class which handles this particular callback: the KeyStoreCallbackHandler.

7.5.1.1. KeyStoreCallbackHandler

As described in Section 7.3.3, “KeyStoreCallbackHandler”, the KeyStoreCallbackHandler uses a
java.security.KeyStore for handling various cryptographic callbacks, including signature verification. For
signature verification, the handler uses the trustStore property:

<beans>
<bean id="keyStoreHandler" class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

<property name="trustStore" ref="trustStore"/>
</bean>

<bean id="trustStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:org/springframework/ws/soap/security/xwss/test-truststore.jks"/>
<property name="password" value="changeit"/>

Securing your Web services with Spring-WS

Spring-WS (1.0.4) 49

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

</bean>
</beans>

7.5.2. Signing Messages

When signing a message, the XwsSecurityInterceptor adds the BinarySecurityToken to the message, and a
SignedInfo block, which indicates what part of the message was signed.

To sign all outgoing SOAP messages, the security policy file should contain a Sign element. It can also contain
a SignatureTarget element, which specifies the target message part which was expected to be signed, and
various other subelements. You can also define the private key alias to use, whether to use a symmetric instead
of a private key, and many other properties. You can find a reference of possible child elements here.

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
<xwss:Sign includeTimestamp="false" />

</xwss:SecurityConfiguration>

The XwsSecurityInterceptor will fire a SignatureKeyCallback to the registered handlers. Within
Spring-WS, there are is one class which handles this particular callback: the KeyStoreCallbackHandler.

7.5.2.1. KeyStoreCallbackHandler

As described in Section 7.3.3, “KeyStoreCallbackHandler”, the KeyStoreCallbackHandler uses a
java.security.KeyStore for handling various cryptographic callbacks, including signing messages. For
adding signatures, the handler uses the keyStore property. Additionally, you must set the privateKeyPassword

property to unlock the private key used for signing.

<beans>
<bean id="keyStoreHandler" class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

<property name="keyStore" ref="keyStore"/>
<property name="privateKeyPassword" value="changeit"/>

</bean>

<bean id="keyStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:keystore.jks"/>
<property name="password" value="changeit"/>

</bean>
</beans>

7.6. Encryption and Decryption

When encrypting, the message is transformed into a form that can only be read with the appropriate key. The
message can be decrypted to reveal the original, readable message.

7.6.1. Decryption

To decrypt incoming SOAP messages, the security policy file should contain a RequireEncryption element.
This element can further carry a EncryptionTarget element which indicates which part of the message should
be encrypted, and a SymmetricKey to indicate that a shared secret instead of the regular private key should be
used to decrypt the message. You can read a description of the other elements here.

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

Securing your Web services with Spring-WS

Spring-WS (1.0.4) 50

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565497
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

<xwss:RequireEncryption />
</xwss:SecurityConfiguration>

If an incoming message is not encrypted, the XwsSecurityInterceptor will return a SOAP Fault to the sender.
If it is present, it will fire a DecryptionKeyCallback to the registered handlers. Within Spring-WS, there is one
class which handled this particular callback: the KeyStoreCallbackHandler.

7.6.1.1. KeyStoreCallbackHandler

As described in Section 7.3.3, “KeyStoreCallbackHandler”, the KeyStoreCallbackHandler uses a
java.security.KeyStore for handling various cryptographic callbacks, including decryption. For decryption,
the handler uses the keyStore property. Additionally, you must set the privateKeyPassword property to unlock
the private key used for decryption. For decryption based on symmetric keys, it will use the symmetricStore.

<beans>
<bean id="keyStoreHandler" class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

<property name="keyStore" ref="keyStore"/>
<property name="privateKeyPassword" value="changeit"/>

</bean>

<bean id="keyStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:keystore.jks"/>
<property name="password" value="changeit"/>

</bean>
</beans>

7.6.2. Encryption

To encrypt outgoing SOAP messages, the security policy file should contain a Encrypt element. This element
can further carry a EncryptionTarget element which indicates which part of the message should be encrypted,
and a SymmetricKey to indicate that a shared secret instead of the regular private key should be used to decrypt
the message. You can read a description of the other elements here.

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
<xwss:Encrypt />

</xwss:SecurityConfiguration>

The XwsSecurityInterceptor will fire a EncryptionKeyCallback to the registered handlers in order to
retrieve the encryption information. Within Spring-WS, there is one class which handled this particular
callback: the KeyStoreCallbackHandler.

7.6.2.1. KeyStoreCallbackHandler

As described in Section 7.3.3, “KeyStoreCallbackHandler”, the KeyStoreCallbackHandler uses a
java.security.KeyStore for handling various cryptographic callbacks, including encryption. For encryption
based on public keys, the handler uses the trustStore property. For encryption based on symmetric keys, it
will use the symmetricStore.

<beans>
<bean id="keyStoreHandler" class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

<property name="trustStore" ref="trustStore"/>
</bean>

<bean id="trustStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="location" value="classpath:truststore.jks"/>
<property name="password" value="changeit"/>

Securing your Web services with Spring-WS

Spring-WS (1.0.4) 51

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

</bean>
</beans>

Securing your Web services with Spring-WS

Spring-WS (1.0.4) 52

Chapter 8. Marshalling XML using O/X Mappers

8.1. Introduction

In this chapter, we will describe Spring's Object/XML Mapping support. Object/XML Mapping, or O/X
mapping for short, is the act of converting an XML document to and from an object. This conversion process is
also known as XML Marshalling, or XML Serialization. This chapter uses these terms interchangeably.

Within the field of O/X mapping, a marshaller is responsible for serializing an object (graph) to XML. In
similar fashion, an unmarshaller deserializes the XML to an object graph. This XML can take the form of a
DOM document, an input or output stream, or a SAX handler.

Some of the benefits of using Spring for your O/X mapping needs are:

Ease of configuration. Spring's bean factory makes it easy to configure marshallers, without needing to
construct JAXB context, JiBX binding factories, etc. The marshallers can be configured as any other bean in
your application context.

Consistent Interfaces. Spring's O/X mapping operates through two global interfaces: the Marshaller and
Unmarshaller interface. These abstractions allow you to switch O/X mapping frameworks with relative ease,
with little or no changes required on the classes that do the marshalling. This approach has the additional
benefit of making it possible to do XML marshalling with a mix-and-match approach (e.g. some marshalling
performed using JAXB, other using XMLBeans) in a non-intrusive fashion, leveraging the strength of each
technology.

Consistent Exception Hierarchy. Spring provides a conversion from exceptions from the underlying O/X
mapping tool to its own exception hierarchy with the XmlMappingException as the root exception. As can be
expected, these runtime exceptions wrap the original exception so no information is lost.

8.2. Marshaller and Unmarshaller

As stated in the introduction, a marshaller serializes an object to XML, and an unmarshaller deserializes XML
stream to an object. In this section, we will describe the two Spring interfaces used for this purpose.

8.2.1. Marshaller

Spring abstracts all marshalling operations behind the org.springframework.oxm.Marshaller interface, the
main methods of which is listed below.

public interface Marshaller {

/**
* Marshals the object graph with the given root into the provided Result.
*/

void marshal(Object graph, Result result)
throws XmlMappingException, IOException;

}

The Marshaller interface has one main method, which marshals the given object to a given
javax.xml.transform.Result. Result is a tagging interface that basically represents an XML output
abstraction: concrete implementations wrap various XML representations, as indicated in the table below.

Spring-WS (1.0.4) 53

javax.xml.transform.Result implementation Wraps XML representation

javax.xml.transform.dom.DOMResult org.w3c.dom.Node

javax.xml.transform.sax.SAXResult org.xml.sax.ContentHandler

javax.xml.transform.stream.StreamResult java.io.File, java.io.OutputStream, or
java.io.Writer

Note

Although the marshal method accepts a plain object as its first parameter, most Marshaller

implementations cannot handle arbitrary objects. Instead, an object class must be mapped in a
mapping file, registered with the marshaller, or have a common base class. Refer to the further
sections in this chapter to determine how your O/X technology of choice manages this.

8.2.2. Unmarshaller

Similar to the Marshaller, there is the org.springframework.oxm.Unmarshaller interface.

public interface Unmarshaller {

/**
* Unmarshals the given provided Source into an object graph.
*/

Object unmarshal(Source source)
throws XmlMappingException, IOException;

}

This interface also has one method, which reads from the given javax.xml.transform.Source (an XML input
abstraction), and returns the object read. As with Result, Source is a tagging interface that has three concrete
implementations. Each wraps a different XML representation, as indicated in the table below.

javax.xml.transform.Source implementation Wraps XML representation

javax.xml.transform.dom.DOMSource org.w3c.dom.Node

javax.xml.transform.sax.SAXSource org.xml.sax.InputSource, and
org.xml.sax.XMLReader

javax.xml.transform.stream.StreamSource java.io.File, java.io.InputStream, or
java.io.Reader

Even though there are two separate marshalling interfaces (Marshaller and Unmarshaller), all
implementations found in Spring-WS implement both in one class. This means that you can wire up one
marshaller class and refer to it both as a marshaller and an unmarshaller in your applicationContext.xml.

8.2.3. XmlMappingException

Spring converts exceptions from the underlying O/X mapping tool to its own exception hierarchy with the
XmlMappingException as the root exception. As can be expected, these runtime exceptions wrap the original
exception so no information will be lost.

Marshalling XML using O/X Mappers

Spring-WS (1.0.4) 54

Additionally, the MarshallingFailureException and UnmarshallingFailureException provide a distinction
between marshalling and unmarshalling operations, even though the underlying O/X mapping tool does not do
so.

The O/X Mapping exception hierarchy is shown in the following figure:

O/X Mapping exception hierarchy

8.3. Using Marshaller and Unmarshaller

Spring's OXM can be used for a wide variety of situations. In the following example, we will use it to marshal
the settings of a Spring-managed application as an XML file. We will use a simple JavaBean to represent the
settings:

public class Settings {
private boolean fooEnabled;

public boolean isFooEnabled() {
return fooEnabled;

}

public void setFooEnabled(boolean fooEnabled) {
this.fooEnabled = fooEnabled;

}
}

The application class uses this bean to store its settings. Besides a main method, the class has two methods:
saveSettings saves the settings bean to a file named settings.xml, and loadSettings loads these settings
again. A main method constructs a Spring application context, and calls these two methods.

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.oxm.Marshaller;
import org.springframework.oxm.Unmarshaller;

public class Application {
private static final String FILE_NAME = "settings.xml";
private Settings settings = new Settings();
private Marshaller marshaller;
private Unmarshaller unmarshaller;

Marshalling XML using O/X Mappers

Spring-WS (1.0.4) 55

public void setMarshaller(Marshaller marshaller) {
this.marshaller = marshaller;

}

public void setUnmarshaller(Unmarshaller unmarshaller) {
this.unmarshaller = unmarshaller;

}

public void saveSettings() throws IOException {
FileOutputStream os = null;
try {

os = new FileOutputStream(FILE_NAME);
this.marshaller.marshal(settings, new StreamResult(os));

} finally {
if (os != null) {

os.close();
}

}
}

public void loadSettings() throws IOException {
FileInputStream is = null;
try {

is = new FileInputStream(FILE_NAME);
this.settings = (Settings) this.unmarshaller.unmarshal(new StreamSource(is));

} finally {
if (is != null) {

is.close();
}

}
}

public static void main(String[] args) throws IOException {
ApplicationContext appContext = new ClassPathXmlApplicationContext("applicationContext.xml");
Application application = (Application) appContext.getBean("application");
application.saveSettings();
application.loadSettings();

}
}

The Application requires both a marshaller and unmarshaller property to be set. We can do so using the
following applicationContext.xml:

<beans>
<bean id="application" class="Application">

<property name="marshaller" ref="castorMarshaller" />
<property name="unmarshaller" ref="castorMarshaller" />

</bean>
<bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller"/>

</beans>

This application context uses Castor, but we could have used any of the other marshaller instances described
later in this chapter. Note that Castor does not require any further configuration by default, so the bean
definition is rather simple. Also note that the CastorMarshaller implements both Marshaller and
Unmarshaller, so we can refer to the castorMarshaller bean in both the marshaller and unmarshaller property
of the application.

This sample application produces the following settings.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<settings foo-enabled="false"/>

8.4. JAXB

The JAXB binding compiler translates a W3C XML Schema into one or more Java classes, a jaxb.properties

Marshalling XML using O/X Mappers

Spring-WS (1.0.4) 56

file, and possibly other files, depending on the specific implementation of JAXB. Alternatively, JAXB2 offers a
way to generate a schema from annotated Java classes.

Spring supports both the JAXB 1.0 and the JAXB 2.0 API as XML marshalling strategies, following the
Marshaller and Unmarshaller interfaces described in Section 8.2, “Marshaller and Unmarshaller”. The
corresponding integration classes reside in the org.springframework.oxm.jaxb package.

8.4.1. Jaxb1Marshaller

The Jaxb1Marshaller class implements both the Spring Marshaller and Unmarshallerinterface. It requires a
context path to operate, which you can set using the contextPath property. The context path is a list of colon (:)
separated Java package names that contain schema derived classes. The marshaller has an additional validating
property which defines whether to validate incoming XML.

The next sample bean configuration shows how to configure a JaxbMarshaller using the classes generated to
org.springframework.ws.samples.airline.schema.

<beans>

<bean id="jaxb1Marshaller" class="org.springframework.oxm.jaxb.Jaxb1Marshaller">
<property name="contextPath" value="org.springframework.ws.samples.airline.schema"/>

</bean>
...

</beans>

8.4.2. Jaxb2Marshaller

The Jaxb2Marshaller can be configured using the same contextPath property as the Jaxb1Marshaller.
However, it also offers a classesToBeBound property, which allows you to set an array of classes to be
supported by the marshaller. Schema validation is performed by specifying one or more schema resource to the
bean, like so:

<beans>

<bean id="jaxb2Marshaller" class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
<property name="classesToBeBound">

<list>
<value>org.springframework.oxm.jaxb.Flight</value>
<value>org.springframework.oxm.jaxb.Flights</value>

</list>
</property>
<property name="schema" value="classpath:org/springframework/oxm/schema.xsd"/>

</bean>
...

</beans>

8.5. Castor

Castor XML mapping is an open source XML binding framework. It allows you to transform the data contained
in a java object model into/from an XML document. By default, it does not require any further configuration,
though a mapping file can be used to have more control over the behavior of Castor.

For more information on Castor, refer to the Castor web site. The Spring integration classes reside in the
org.springframework.oxm.castor package.

Marshalling XML using O/X Mappers

Spring-WS (1.0.4) 57

http://castor.org/xml-framework.html

8.5.1. CastorMarshaller

As with JAXB, the CastorMarshaller implements both the Marshaller and Unmarshaller interface. It can be
wired up as follows:

<beans>

<bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller" />
...

</beans>

8.5.2. Mapping

Although it is possible to rely on Castor's default marshalling behavior, it might be necessary to have more
control over it. This can be accomplished using a Castor mapping file. For more information, refer to Castor
XML Mapping.

The mapping can be set using the mappingLocation resource property, indicated below with a classpath
resource.

<beans>
<bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller" >

<property name="mappingLocation" value="classpath:mapping.xml" />
</bean>

</beans>

8.6. XMLBeans

XMLBeans is an XML binding tool that has full XML Schema support, and offers full XML Infoset fidelity. It
takes a different approach to that of most other O/X mapping frameworks, in that all classes that are generated
from an XML Schema are all derived from XmlObject, and contain XML binding information in them.

For more information on XMLBeans, refer to the XMLBeans web site . The Spring-WS integration classes
reside in the org.springframework.oxm.xmlbeans package.

8.6.1. XmlBeansMarshaller

The XmlBeansMarshaller implements both the Marshaller and Unmarshaller interfaces. It can be configured
as follows:

<beans>

<bean id="xmlBeansMarshaller" class="org.springframework.oxm.xmlbeans.XmlBeansMarshaller" />
...

</beans>

Note

Note that the XmlBeansMarshaller can only marshal objects of type XmlObject, and not every
java.lang.Object.

Marshalling XML using O/X Mappers

Spring-WS (1.0.4) 58

http://castor.org/xml-mapping.html
http://castor.org/xml-mapping.html
http://xmlbeans.apache.org/

8.7. JiBX

The JiBX framework offers a solution similar to that which JDO provides for ORM: a binding definition
defines the rules for how your Java objects are converted to or from XML. After preparing the binding and
compiling the classes, a JiBX binding compiler enhances the class files, and adds code to handle converting
instances of the classes from or to XML.

For more information on JiBX, refer to the JiBX web site. The Spring integration classes reside in the
org.springframework.oxm.jibx package.

8.7.1. JibxMarshaller

The JibxMarshaller class implements both the Marshaller and Unmarshaller interface. To operate, it
requires the name of the class to marshall in, which you can set using the targetClass property. Optionally, you
can set the binding name using the bindingName property. In the next sample, we bind the Flights class:

<beans>

<bean id="jibxFlightsMarshaller" class="org.springframework.oxm.jibx.JibxMarshaller">
<property name="targetClass">org.springframework.oxm.jibx.Flights</property>

</bean>

...

A JibxMarshaller is configured for a single class. If you want to marshal multiple classes, you have to
configure multiple JibxMarshallers with different targetClass property values.

8.8. XStream

XStream is a simple library to serialize objects to XML and back again. It does not require any mapping, and
generates clean XML.

For more information on XStream, refer to the XStream web site. The Spring integration classes reside in the
org.springframework.oxm.xstream package.

8.8.1. XStreamMarshaller

The XStreamMarshaller does not require any configuration, and can be configured in an application context
directly. To further customize the XML, you can set an alias map, which consists of string aliases mapped to
classes:

<beans>

<bean id="xstreamMarshaller" class="org.springframework.oxm.xstream.XStreamMarshaller">
<property name="aliases">

<props>
<prop key="Flight">org.springframework.oxm.xstream.Flight</prop>

</props>
</property>

</bean>
...

</beans>

Marshalling XML using O/X Mappers

Spring-WS (1.0.4) 59

http://jibx.sourceforge.net/
http://xstream.codehaus.org/

Note

Note that XStream is an XML serialization library, not a data binding library. Therefore, it has
limited namespace support. As such, it is rather unsuitable for usage within Web services.

Marshalling XML using O/X Mappers

Spring-WS (1.0.4) 60

Part III. Other Resources
In addition to this reference documentation, there exist a number of other resources that may help you learn
how to use Spring Web Services. These additional, third-party resources are enumerated in this section.

Spring-WS (1.0.4) 61

Bibliography
[waldo-94] Jim Waldo, Ann Wollrath, and Sam Kendall. A Note on Distributed Computing. Springer Verlag.

1994.

[alpine] Steve Loughran and Edmund Smith. Rethinking the Java SOAP Stack. May 17, 2005. Copyright ©
2005 IEEE Telephone Laboratories, Inc..

[effective-enterprise-java] Ted Neward. Scott Meyers. Effective Enterprise Java. Addison-Wesley. 2004.

[effective-xml] Elliotte Rusty Harold. Scott Meyers. Effective XML. Addison-Wesley. 2004.

Spring-WS (1.0.4) 62

	Spring Web Services - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. What is Spring Web Services?
	1.1. Introduction
	1.2. Runtime environment

	Chapter 2. Why Contract First?
	2.1. Introduction
	2.2. Object/XML Impedance Mismatch
	2.2.1. XSD extensions
	2.2.2. Unportable types
	2.2.3. Cyclic graphs

	2.3. Contract-first versus Contract-last
	2.3.1. Fragility
	2.3.2. Performance
	2.3.3. Reusability
	2.3.4. Versioning

	Chapter 3. Writing Contract-First Web Services
	3.1. Introduction
	3.2. Messages
	3.2.1. Holiday
	3.2.2. Employee
	3.2.3. HolidayRequest

	3.3. Data Contract
	3.4. Service contract
	3.5. Creating the project
	3.6. Implementing the Endpoint
	3.6.1. Handling the XML Message
	3.6.2. Routing the Message to the Endpoint

	3.7. Publishing the WSDL

	Part II. Reference
	Chapter 4. Shared components
	4.1. Web service messages
	4.1.1. WebServiceMessage
	4.1.2. SoapMessage
	4.1.3. Message Factories
	4.1.3.1. SaajSoapMessageFactory
	4.1.3.2. AxiomSoapMessageFactory
	4.1.3.3. SOAP 1.1 or 1.2

	4.1.4. MessageContext

	4.2. TransportContext
	4.3. Handling XML With XPath
	4.3.1. XPathExpression
	4.3.2. XPathTemplate

	Chapter 5. Creating a Web service with Spring-WS
	5.1. Introduction
	5.2. The MessageDispatcher
	5.2.1. MessageDispatcherServlet
	5.2.1.1. Automatic WSDL exposure
	5.2.1.1.1. Exposing a static WSDL
	5.2.1.1.2. Dynamically creating a WSDL from an XSD

	5.2.2. Wiring up Spring-WS in a DispatcherServlet

	5.3. Endpoints
	5.3.1. AbstractDomPayloadEndpoint and other DOM endpoints
	5.3.2. AbstractMarshallingPayloadEndpoint
	5.3.3. @Endpoint
	5.3.3.1. @XPathParam

	5.4. Endpoint mappings
	5.4.1. PayloadRootQNameEndpointMapping
	5.4.2. SoapActionEndpointMapping
	5.4.3. MethodEndpointMapping
	5.4.4. Intercepting requests - the EndpointInterceptor interface
	5.4.4.1. PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor
	5.4.4.2. PayloadValidatingInterceptor
	5.4.4.3. PayloadTransformingInterceptor

	5.5. Handling Exceptions
	5.5.1. SoapFaultMappingExceptionResolver
	5.5.2. SoapFaultAnnotationExceptionResolver

	Chapter 6. Using Spring Web Services on the Client
	6.1. Introduction
	6.2. Using the client-side API
	6.2.1. WebServiceTemplate
	6.2.1.1. URIs and Transports
	6.2.1.2. Message factories

	6.2.2. Sending and receiving a WebServiceMessage
	6.2.3. Sending and receiving POJOs - marshalling and unmarshalling
	6.2.4. WebServiceMessageCallback
	6.2.5. WebServiceMessageExtractor

	Chapter 7. Securing your Web services with Spring-WS
	7.1. Introduction
	7.2. XwsSecurityInterceptor
	7.3. Keystores
	7.3.1. KeyTool
	7.3.2. KeyStoreFactoryBean
	7.3.3. KeyStoreCallbackHandler

	7.4. Authentication
	7.4.1. Plain Text Username Authentication
	7.4.1.1. SimplePasswordValidationCallbackHandler
	7.4.1.2. AcegiPlainTextPasswordValidationCallbackHandler
	7.4.1.3. JaasPlainTextPasswordValidationCallbackHandler

	7.4.2. Digest Username Authentication
	7.4.2.1. SimplePasswordValidationCallbackHandler
	7.4.2.2. AcegiDigestPasswordValidationCallbackHandler

	7.4.3. Certificate Authentication
	7.4.3.1. KeyStoreCallbackHandler
	7.4.3.2. AcegiCertificateValidationCallbackHandler
	7.4.3.3. JaasCertificateValidationCallbackHandler

	7.5. Digital Signatures
	7.5.1. Verifying Signatures
	7.5.1.1. KeyStoreCallbackHandler

	7.5.2. Signing Messages
	7.5.2.1. KeyStoreCallbackHandler

	7.6. Encryption and Decryption
	7.6.1. Decryption
	7.6.1.1. KeyStoreCallbackHandler

	7.6.2. Encryption
	7.6.2.1. KeyStoreCallbackHandler

	Chapter 8. Marshalling XML using O/X Mappers
	8.1. Introduction
	8.2. Marshaller and Unmarshaller
	8.2.1. Marshaller
	8.2.2. Unmarshaller
	8.2.3. XmlMappingException

	8.3. Using Marshaller and Unmarshaller
	8.4. JAXB
	8.4.1. Jaxb1Marshaller
	8.4.2. Jaxb2Marshaller

	8.5. Castor
	8.5.1. CastorMarshaller
	8.5.2. Mapping

	8.6. XMLBeans
	8.6.1. XmlBeansMarshaller

	8.7. JiBX
	8.7.1. JibxMarshaller

	8.8. XStream
	8.8.1. XStreamMarshaller

	Part III. Other Resources
	Bibliography

