ﬁ

Spring

2.0

Copyright © 2004-2006 Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu,
Rob Harrop, Thomas Risberg, Darren Davison, Dmitriy Kopylenko, Mark Pollack, Thierry
Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin Leau,

Rick Evans

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

1= =0 TSP RPERR Xiv
I I 014 oo 18 ot A oo PR RPPPPI 15
0 T Y= VT T RS 15
1.2, USAQE SCENGITOS .. .uuvvieiieee et e ittt et e e e e e e e ettt e e e e e e e s s e ta b e e e e eeeeeesaaateeeaeeeaaesssaasntsbareeeeeesannnssrnnnes 17
2. What'SNeW iN SPriNg 2.07 ..ottt e ettt e e st e e e e st e e e e s e e e e e nnnne e s 20
P28 W g 1 oo 8 Tox £ o o TP U 20
2.2. Thelnversion of Control (I0C) CONLAINEYiiuuriiiiiiiiie et 20
2.2.1. Easier XML CONfIQUIELioNueeiiiiieeeiiiiiiiiee et e et e e e e e e e e eeeeaee s 20
2.2.2. NEOW DEBN SCOPES ...uvvviiiiiee e i ittt ettt e e e e e e e e e e e s s sttt e e e e e e e e s e nnnbaaeeeeaeeas 20
2.2.3. Extensible XML @UENOTNGoeiiiiiiiieeiiieee et 21
2.3. Aspect Oriented Programming (AOP) ... 21
2.3.1. Easier AOP XML CONFIQUIAIONeveeiiiiiieeiiiiieeeaiiiee ettt e e e nnneee s 21
2.3.2. Support for @ASPECLI BSPECES ...ccoeeee e 21
P N I =3 1T (o | F= N = PSSR 21
2.4.1. Easier configuration of declarative transactionsin XMLcccoocooiiiiiiiieiiiiiciieeeeeen, 22
2.4.2. JPA e e et e e ba e e e ea s 22
2.4.3. ASYNCIIONOUS IMSottt e st e e anneee s 22
244, IDBC ..ot e e e e e e e e e e br e e e e nnnreae s 22
I I SV o B T PSSP 22
25.1. Aformtag library for Spring MV C ..., 22
2.5.2. Sensible defaulting in SPring MV C ... 23
2.5.3. POIIEL fFrAMEWOIKoiiiieiiii et e et e e e e e e e e e eeeeeaaeens 23
2.6. EVENYNING E1SE ... e e a e e e e nraans 23
2.6.1. DynamicC |anguage SUPPOITcoourrreeriirreeeaaiieeeesasteeee s st e e e s e e e s s e e e s annneeeeannnneeens 23
2.6.2. IMX oot — e e e h e e e e ettt e e e et b e e e e e nre e e e e arteeeeannnreeen 23
2.6.3. TasK SCNEAUIINGeeeiiiiiiieiieie et e e as 23
2.6.4. Java’b (TIgE) SUPPOIT ..cceee e 23
2.7. Migrating to SPriNG 2.0 ..ceieeeiiiiiiieie e et e e e e e e e e e e e s s et r e e e e e e s e r e e e e e e e e aarnraaees 24
2.7. 0. CREINGESeeeeieiitie et et e e e e e e e e e e e s 24
2.8. Updated sample appliCationsccoieiiiiiiiiiiiiie e e e e e e 25
2.9. IMProved dOCUMENTBLIONueiieiiiiiie ettt e et e e s e e e s s e e e s annr e e e s annneee s 26
I o (=T <o o1 0] Fo o 1= PP EURR PP 27
G T N o= o @ oo g =T 1= S PURSRR 28
10 50 1 11 o LB (o1 o o SR 28
3.2. Basics- containers and DBANScooiiiiiiiiiiiii 28
0 220 T I 0= oo | =1 = PSR 29
3.2.2. Instantiating @ CONTAINEYooiiiiiieiiie e e e e e e e e e s s sb e e e e e e e e e eaaaes 30
e T I 0= o = 1 PSR 31
3.2.4. USINGThE CONAINETcoeiiiiiiiiiiieeeeee e 35
3.3, DEPENUENCIES ...eeeieee ettt et e e et e e e e st e e e et e e et n e e s 36
3.3.1L. INjecting dePENENCIEScccvvviiiiiiiiii e 36
3.3.2. Constructor Argument RESOIULIONccoeviiriiiiieee e e i e e e e e e e 40
3.3.3. Bean properties and constructor argumentsdetailedcccccveeeiiiiiciiiiiiee e 42
I B U 1= g To o T=Y Y=Y T F o o U PPRPRN 48
3.3.5. Lazily-instantiating DEANScooiiiiiiieiiiiie e 49
3.3.6. AULtOWITING COIADOTELONSceeveveeieiiiieeee e 50
3.3.7. Checking fOr dependenCiescoouiiiiiiiiiee e 51
3.3.8. Method INJECTION ...t e e e e e e e s e ee e e e e e e e ennnes 52
I T I o] o - PP 55
3.4.1. The SINGIEION SCOPEeeeeeeiiiie ettt e e as 56
3.4.2. ThE PrOtOLYPE SCOPE ...uvvvreiiieeeeiiiitttee e e e e e e e e s ettt e e e e e e e e s s aatbbaeeeaaeessssnsnbrseeeaaeeesannns 57
3.4.3. THE OtNEN SCOPESeiiiiiiiiie ettt as 58

Spring Framework (2.0) ii

The Spring Framework - Reference Documentation

3.4.4. CUSIOM SCOPES ...ccoiiitreeeieeeeeseait e e e e e e s s s e e e e e e e s s s r b e e e e e e e e e s s annrrrneeeeeeenannnes 62
3.5. Customizing the nature of @abEaNcooiiiiiiiiiii e 63
3.5.1. LifECYCleINTEITACES ..ot 63
3.5.2. KNOWINGWRO YOU @IE ...ccceeviiiiiiiiiceeeeeeee ettt ettt 66
3.6. Bean definition iNhErtanCevveeiiieii i 68
3.7. Container EXtENSION POINESeiieeeieiieeeeeeesaeteieeeaeeeeeaaeeeeeeraaeesaaanneeeereeaeesaaannreneeeeaaess 70
3.7.1. Customizing beans USiNg BeanPOoSt PrOCESSOT'S .uuviveeeiiieiurrrereeeeeesssisinrrsnreeesessannnns 70
3.7.2. Customizing configuration metadata with BeanFact or yPost Processors 72
3.7.3. Customizing instantiation 0giC USING Fact 0r yBEANSc.vvveeeeeeeeiiiiiurrreeeeeeeseinnns 75
3.8. THEAPPI i CALi ONCONE EXE tiviiiiiiiiiiiiiiiiiieeeeeee ettt ettt ettt 75
3.8.1. Internationalization USING MeSSAgESOUr CES ivvviririiiiiiiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeaeeeaeees 76
G I V< o | TP 78
3.8.3. Convenient accessto |OW-1eVEl TESOUICESeeiiieeeiiiiiiiieieee e 80
3.8.4. Convenient Appl i cati onCont ext instantiation for web applications 80
3.9. Gluecode and the evil SINGIEIONoeiiiiiiie e 81
3.9.1. Using the SINgleton-helper ClaSSeS ...uuviiii oo 82
S 011 01N 83
g R 1 11 oo LB (o1 oo SR 83
4.2. TheResource INEITACEoooiviiiii 83
4.3. Built-in Resour ce
IMPIEMENTBLIONSeeiiiiieeee e e e e e e s e r e e e e e e s e et b e e e e e e e e s s snanreaaeeeaaeas 84
. 3.1, U I RESOUI CB tevtueeiiitieeeitteeeeett e eeeett e e e eett e e e e asta e eee st aesastnsaeeesansaeessanasessanaeeesnan 84
4.3.2. Cl ASSPAt NRESOUI CE tuuuiiiiriiieeiiiiieeeetteee ettt eeeeetteeeeast e e eatan e eeesanaeeessanaeeessnnaeeeenan 84
4.3.3. Fi | @SYSt EMRESOUI CE iieeiieiriiiiiieeeeeeeeetttiiaeeeeeeeeeattt e eeeeeeeetrtaaseeeaeeeestnnnaeaes 85
4.3.4. Servl et CONt @XE RESOUI C& .uiieiiruuieeeirtieeeetteeeeetteeeeestaeeeestnseseestnaeeessnnaeeesnnnaeeesnns 85
4.3.5. | NPUL SET EAMRESOUI CE irvvvurieierteieeiettiieerettteetertteesesttesresttesressneersssseerersseereses 85
T = Y] A=Y VO = NV =YY LU o = N 85
A4, TRERESOUIN CELOAUERT .oeiviiiiiiiiiiiieieieeeeeeeeeeee ettt ettt ettt e aeaeaaees 85
4.5. The Resour ceLoader Anar e
L= == SRR 86
4.6. Setting Resour ceSas
PrOPEITIES .o ——————— 87
4.7. Application contexts and Resour ce
PAENS . e e s e 87
4.7.1. Constructing application CONEXLSciiieiiiiiiiiiiiiie e e e e e 87
4.7.2. Wildcards in application context constructor resource
7= 1.1 PPN 88
4.7.3. Fil eSyst eMReSOUr €& CAVERLScieeeeeieiiiiiieieeeee e eeetie e e e e e e e e e et e e e e e e e e ee it e as 90
5. Validation, Data-binding, the Beanw apper, and Propert yEdi t 0r' S ...eeevveeeiiiiiviieieeeeeeeinneeeeen, 92
ST I 1 oo (8ot (o) o PRSP PRI 92
5.2. Validation using Spring's Val i dat or INTEITACEcooiiiiiiiiiiiiee e 92
5.3. ReS0IVING COOES O BTN IMESSAGES ...vevieeeeiiciiiriieeieeeeeeseititer e e e e e e e s s seatrreeeeeaeeesessntereeaaaeeas 94
5.4. Bean manipulation and the BeanW apperc...uuevereeeeiiiiciiiiereeeeessseiiieeeeeeeesssssnreneeeeeeens 94
5.4.1. Setting and getting basic and nested propertiesccccceeee e, 94
5.4.2. Built-in PropertyEditor implementationsccooviveeeiiiiiiee e 96
6. Aspect Oriented Programming With SPringooooiiiieiiiiieooiceee e 100
G300 I 1 oo [0 ot (o) o PRSP PRI 100
B.1.1. AOP CONCEPLS ...uuerriieieieeeeiaiiirr et e e e e s st e e e e e e s s e e e e e e e s s snnr e e e e e e e e e s s nnnnrnnees 100
6.1.2. Spring AOP capahilities and goalscccvvieiiieiiiiciiiee e 102
6.1.3. AOP ProXi€Sin SPIiNG ...ceeeiiueeieeiiiiieeeiiiieeeasiieee et e s e e e e e sbee e e s snanneees 102
6.2. @ASPECII SUPPOIT .o ——————— 103
6.2.1. Enabling @A SPECET SUPPOITeeeeiiiiieeeiiieie e ettt e st 103
Spring Framework (2.0) ii

The Spring Framework - Reference Documentation

6.2.2. DECIaring @N GSPECTvveeeiiiiiee ettt 103
6.2.3. DeClaring @POiNICULcoiiiiiiiiiie e e e e e e e e e e e e e ennreaes 104
6.2.4. DECIANG AOVICEcooiiiiiiieiiiie ettt e as 109
B.2.5. INrOAUCLIONS ... e e e e e e e e e eeneeeeas 115
6.2.6. Aspect iNStantiation MOGEIScueiiiiiiiiie e 115
3 B = 0 o] = PR 116

6.3. Schema-based AOP SUPPOIuviiiiiiiee e ittt e e e e e s se e e e e e e e e s s st ra e e e e e e e e s e snnrraereeaeeas 117
6.3.1. DECIaring @ GSPECTvveeeiiiiiieeeiiii ettt 118
6.3.2. DeClaring @POiNICULcooiiiiiiiee et e e e e e s e e e e e e e e e eanreees 118
6.3.3. DECIAING AOVICEceeiiiiiiieiiiiiie ettt 119
LG N g 1 oo U Tox £ o PR 123
6.3.5. Aspect instantiation MOEIScueiiiiiiiiiie e 124
LG T N0 Vo = PR 124
B.3.7. EXAMPIE ooeeeieei e 125

6.4. Choosing which AOP declaration Styl€ TO USEccoiiiiiiiiiiiiiiieiiieee e 126
6.4.1. Spring AOP oF Ul ASPECEI? ...ovviiiiiie e 127
6.4.2. @Aspectdor XML for Spring AOP? ... 127

6.5. MiIXING BSPECLLYPES ... 128
6.6. ProxXying MEChaNISMScoiiiiiiiiiii e e e e e e e e r e e e e 128
6.7. Programmatic creation of @ASPECII PrOXIESoeveiiiiiiiiiiiiiiee e 128
6.8. Using Aspectd with Spring appliCationsccceeveieiiiiiiiiiiee e 129
6.8.1. Using AspectJ to dependency inject domain objects with Springcccccoeeveeeen. 129
6.8.2. Other Spring aspectS fOor ASPECL ...ooeeeiiiiiiiiiee e 131
6.8.3. Configuring AspectJ aspectsusing SPring 10Cccuveeiiiiieeeiniiiie e 132
6.8.4. Using AspectJ Load-time weaving (LTW) with Spring applications 133

6.9. FUIMNEN RESOUICESooiiiiiiiiiiieiee ettt et e e st e e s nnbb e e e e s nnnnee s 134
AR o] AT o 7A@ = N SRR 135
4% O 1 oo [0 o) o PRSP RRP 135
7.2. POINTCUL APL IN SPIING .ottt e st e e e s e e s 135
7 T O 7o = 135
7.2.2. Operations 0N POINTCULSuveeeeiiurrieeeiiieeeeasiieeeessibeeeeessseneeesssbeeeessbeeeeesannneees 136
7.2.3. ASPECtI EXPreSSion POINLCULSccceeeeieeeie et 136
7.2.4. Convenience pointcut implementationsccccceevveciiiieiiee e 136
7.2.5. POINTCUL SUPEICIBSSESeeiiiiiiiieeiiiiiee ettt e e s 138
7.2.6. CUSLOM POINTCULSvvveiieeeeiiiiiiiieeeeeeessseiatiteeeeeeee e s s staraaeeeeeeesssnntrrareeeaeessannsnrnnees 138

7.3, AQVICE API IN SPIING ittt e e e e st e e nnnneee s 138
7.3.1 AAVICelifECYClES ..o, 138
7.3.2. AQVICELYPES N SPIING ..eveeeiiiiiieeeiiiie ettt e et e e e s anneee s 139
N0 V7R o N o TR o 1o SR 144
7.5. Using the ProxyFactoryBean to create AOP ProXi€sccvveeveeeeeiiiiiiiieiieee e 144
AT O = T T oSSR 144
7.5.2. JAVABEAN PIrOPEIMTIES ..oveiiie e i ittt e e e e e e e e e e s e et e e e e e e e e ennreaees 145
7.5.3. IDK- and CGLIB-based PrOXi€Scccoiiiiiieiiiiiiee et 146
7.5.4. Proxying iNterfates ..., 147
7.5.5. PrOXYING ClASSESeeiiiiiiiieiiiiiie ettt ettt e st e e e st e e e s e e s 148
7.5.6. USING 'global’ @0VISOIScoooiiiiiecieie e 149

7.6. Concise proxXy defiNItIONSccuviiiiiiie e e e a e 149
7.7. Creating AOP proxies programmatically with the ProxyFactoryccccccevviiieeiiiinnnen. 150
7.8. Manipulating advisSed ODJECESuveiiiiieiiiiciie e 151
7.9. Using the "autoproXy™ FACHTITYooourieiiiiiiie e 152
7.9.1. Autoproxy bean definitionS ..., 152
7.9.2. Using metadata-driven autO-ProXyingcoeooeeeeerrieeeeernuneeesnsieeeessieeeeesnnneees 154

Spring Framework (2.0) iv

The Spring Framework - Reference Documentation

7.10. USING TAIGEISOUITESceeiiiiiiieeeaiieee e sttt e e sttt e et e e et e e e st e e e e e e e s b e e e e nnnneeeas 156
7.10.1. Hot swappable target SOUMCESuvviiieei ittt e et e e e e 156
7.10.2. POOIING tArgEL SOUICESuueiieeiiiiiee et ee e et et e st e e st e e e anneee s 157
7.10.3. Prototype target SOUIMCEScvuvuiiiieeieieeeiiiis s e e e e e et s e e e e e e e e et e e e e e e e eeann e eeas 158
7.10.4. ThreadLocal TArget SOUICESccciieeiiiiiurrriieieeeeaaaaiirereeeeee s s s snbbreree e e e e e e s snnneeneas 158

7.11. Defining NEW AdVi C& TYPES ...uuiiiiieiieee e ettt e e e e e e et e e e e e e e e sttt e e e e e e e e e anneeeeeeaaeens 159

7. 12, FUINEI TESOUICESeiiiitiiee e ittt e ettt e ettt e sttt e e ettt e e e e sttt e e e e st b e e e e et e e e e s anbb e e e e annnneee s 159

S 1= 11 o [P PP PP P PUPRPP TP 160

S 30 I 1 oo [0 o) o S PRPSOTPRPP TP 160

8.2, UNITTESING ...veeieiiiiiie ettt e e e e e e e e et e e e e e anbn e e e e e nnnree s 160

8.3. INtegratioN tESLINGccoeeeeee e ——————— 160
8.3.1. Context management and CaChiNGcceeveiiiiiiiiiiiieee e 161
8.3.2. Dependency Injection of test FIXIUrESveiiiiieeeiiie e 161
8.3.3. TransaCtion MaNAgEMIENLuvuereeeeeiiiiiiiieiee e e e e e s s esirrre e e e e e e s e ssnnrrer e e e e e e e e e snnranees 163
8.3.4. ConvenienCe VariablESccuuiiiiiiie e 163
B.3.5. EXAMPIE oo 164
8.3.6. RUNNING INtEJIratiON TESESuveieeiiieiie ettt 165

8.4. FUINEr RESDUICESeiiiiiieiei ittt e ettt e e e e e et e e e e e e e e ettt e e e e e e e e e anneeneeeaaeens 165

[1. MiddIE TIEN DAIAACCESScuvveeeeieuiteeeeeeittee e e aite e e s sttt e e e asb et e e e s bbb et e e aabb e e e e e ssbbe e e e asbe e e e s anbbeeeeennbneeeeann 166
9. Transaction MANAGEMENTuuiiiiiiieie et e e e e r e e st e e e e s s e e e e s nr e e e s asreeeeaannneeeas 167

S0 I 1 oo [0 o (o) o PP RRRTPI 167

S Y/ Lo (V7 (0] RSP 167

0.3, KEY @DSITACHIONSuviiiiiiiie et e e e e e e e s s st re e e e e e e e e e sanrrreeeeaeeas 169

9.4. Resource synchronization With tranSaCtionScoooueiieiiiiiie e 171
9.4.1. High-level approachcccooo i, 171
9.4.2. Low-level approaChoociiiiiiiie e 172
9.4.3. Transact i ONAWAr €Dat ASOUN CEPI OXY tvvevvruuuiiieeerrrerstuusseeeeereeesnnnaaeeeeeeeessnnneaes 172

9.5. Declarative transaction ManagemMENtccuvvveiieeee i e i e s e e e e e e e e e e e 172
9.5.1. Understanding Spring's declarative transaction implementationccceve.e.. 174
0.5.2. AFITSt @XAMPIE .. . 175
9.5.3. ROHING DACK .t 178
9.5.4. Configuring different transactional semantics for different beans 178
9.5.5. <tx:advi cel > SEHINGS .iiieiiiiiiiiiei et 180
9.5.6. USING @IT ANSACET ONAI 1eveeeiiiiiiiiiiereeessseiiieeeeeeeeessssnteaereeeeessssnstaaeeneeeessaansnrenees 181
9.5.7. Advising transactional OPErationscccvveieeieeeiiiiciiier e 184
9.5.8. Using @r ansacti onal WIith ASPECEevvviiiiiiiieiiiee e 186

9.6. Programmatic transaction ManagemMeNtcooeveieieiii e 187
9.6.1. USINg the Transact i ONTEMPI 8L € ...veeeeiiiiiieeeiiiiiieesiiiee e e st e et e e 187
9.6.2. Using the Pl at f or nTr ansact i ONMANAGETueerrreeeeiiiiiiiiereeaeeseaanereeeeeeeeeseaanneeees 188

9.7. Choosing between programmatic and declarative transaction management 188

9.8. Application server-SpecifiC iNEGratioNooiurrieiiiieiee e 189
O.8.1. BEA WEDLOGIC ...vveeeiiuiiiieeiiiiiiee e e sittie e e sttt e s sttt e sttt e e e st e s s st e e e s snbeeeeeannneee s 189
0.8.2. IBM WEDSPREIE ...ttt 189

9.9. Solutionsto commOonN ProblEMScooeiiiiii s 189
9.9.1. Use of the wrong transaction manager for a Specific Dat aSour ceccvveervevnnnen. 189

9.10. FUIMNEr RESOUITESeeiiiieeeiiieiiteiee e e e ettt e e e e e e ettt e e e e e e s e ettt e e e e aeeeaeannneeneeeaaeens 190

O T N @ IR o] o Lo R 191

0 50 T g 11T [T 1 oo O RPRRR 191

10.2. Consistent exception NIErarchyccciiiiiiie e e e 191

10.3. Consistent abstract classes for DAO SUPPOITceeiruvrereeiiieieeeriiieeessiinee e e e sineee e 192

11. Data accessUSING IDBC ... 193

0 T 1o [T 1 o T T RPPRR 193

Spring Framework (2.0) Y

The Spring Framework - Reference Documentation

11.1.1. Thepackage hierarChy ... 193
11.2. Using the IDBC Core classes to control basic JDBC processing and error handling 194
0t I 1 [Yol =Y 1o = A=Y 194
11.2.2. NanmedPar amet €r JADCTENP!] AL € cuvuiiernieieiieiiiieieie e e ee e e e s b e e e e e e s er e eean e ranns 194
11.2.3. Si Pl @JADCTEMPI AL E .uuuiieeeiiieiiiiii e e e e e e e eeett e e e e e e e e e e eae e e e e eeeeeeas b e e eeeeeeessrnnans 196
L11.2.4. DAt BSOUI CE .uieeieriieeiit e e et e e e ettt e e e et e e e e e et e e e e et e e e e et e e eeetan e esetanaaaeetanaeaeetannns 197
11.2.5. SQLEXCEPLi ONTIANS| AL OT cevuuiiiieriieeietiieeeieteeeeeeteeeesetaeeesettaeeeseraeeeseraeeeserannns 197
11.2.6. EXECULING SIAEEIMENLSoueviiieiiiiiie ettt e et et e et e e e e e e e e aaes 198
11.2.7. RUNNING QUENTESoeeeieiiiiiiee ettt e e e e e et e e e e e e s s santrreeeeaa s 199
11.2.8. Updating the dat@baseccueiiiiiiiiieeiiiee e 199
11.3. Controlling database CONNECLIONScccooiii e 200
N T O 1 AT o T Y=Y U 8 I TR 200
11.3.2. SIBI t DAL @SOUF CE eeevrrueeeiiiieeeeeeteeeeeeteeeeeet e eeeeta e aesetaaeeeetaaeasetaaaaseranaeasesnnnns 200
11.3.3. ADSE T ACE DAL ASOUI C& wruuerirruniereetueeeeatuseeeretueeeestneeeretnaeeeetnaeeretaeerernnaeeresnnnns 200
11.3.4. Singl eConNECt i ONDAL ASOUT CE wrvruuuieeeeerererrrnnseeeererrersrnnseeeeeeerensrnnaaaeeeseressmnnnns 200
11.3.5. Dri ver MANager DAt @SOUI CE .uuuveeuiiernieerneeeruereseesteeeteeeaneertnseesseeenaeerteeraneerrnns 201
11.3.6. Transacti onAWAr €Dat @SOUT CEPF OXY ..ecevvvrrruuiiieeerrererniniseeeeeseeensrnaaeeeesesesssnnnn 201
11.3.7. Dat aSour ceTr anSact i ONMANAGET cccuuieeeiiiuieeeeitieeeeeetaeeeeetaaeeeetaeeeeernneeeeesnnnns 201
11.4. Modeling JDBC operations as Java ObjECLScccvvvieeiiieiiiicie e 202
I g oo =Y P 202
O S Y o T T (o 1S o LN T =T AP 202
G T o TR = =P 203
N s e Y [o Lo =Y [T = S 204
N ST o =T Yo e 206
12. Object Relational Mapping (ORM) dat@ @CCESSccoeeiiiiiiiiiiiie e 208
020 O 1 oo [0 ot o o PP PPPP TP 208
A o 110 7= (SO RPERR 209
12.2.1. RESOUICE MaNAQEMENTciiiiieiiiiiiii e e e e e e eeetrtea s e e e e e e eeeeernaa e s e e e s e eeesranaaaeeeeeeenernnnnn 210
12.2.2. sSessi onFactory setupinaSpring
=00 1o 1o g W elo g1 =) (PR 210
N T 2N A e T =Y oY o] I = 211
12.2.4. Implementing Spring-based DAOs without callbacksccccoeeeiiieiiiiin, 212
12.2.5. Implementing DAOs based on plain Hibernate3 APlcccvvveviveeiiiiciieeeee, 212
12.2.6. Programmatic transaction demarCationoccveeeerriieeeeiiiieeeesineee e sineeee e 213
12.2.7. Declarative transaction demarCationccceeeiiueeeeniiieeessiiieeessiieee e sieeee e 214
12.2.8. Transaction management SIraleJIESoeeiirreieiiiiiiee et ee e e e 216
12.2.9. Container resources Versus |0Cal reSOUICESc..uveieieeeiiiiiiiiiieeee e eieieee e 217
12.2.10. Spurious application server warnings when using Hibernatecccccceees 218
122 N 5 L USRS 219
12.3.1. PersistenceManagerFactory SEtUDoveveeeeeiiiiiiiieiiee e e e e e 219
12.3.2. JdoTenpl at e and
Lo 11 = e ST o] o 1o o 220
12.3.3. Implementing DAOs based on plain IDO APlooviiiiiiiieiiieeeeee e 221
12.3.4. Transaction MaNAGEMENTccceeiiiieeie e ireees e s s s s e e e e e e e 223
12.3.5. JHODIAIECEevviieeeiieiee et e e et e e e e e e e e e e e e enreeeeaans 223
12.4. OraCle TOPLINKeeeiiiieeeii ittt e ettt e e e e e e e e et e e e e e e e e e ennneaeeeaaeeeeaannes 224
12.4.1. SessionFact ory QDSITACHIONuvueiiiiiiiiiiiiiie e e e e e e eeaaaaas 224
12.4.2. TopLi nkTenpl at e and
TOPLI NKDAOSUDPPOT b vevuniittiieteieeteeetierst e eeteeet e st e eaaessteesansesta e raneraneeetnsessnrerrnns 225
12.4.3. Implementing DAOs based on plain TOPLINK APl ... 226
12.4.4. Transaction MaNAGEMENTccceeieieee i e es e s s e e e 227
12.5. IBATIS SQL MEPS .. .uveiiiiiiiiii et e ettt e ettt e e e et e e e e e b e e e e s e e e e e nreeeesasneeeeanns 228

Spring Framework (2.0) Vi

The Spring Framework - Reference Documentation

12.5.1. Overview and differences between iBATIS 1.X and 2.Xccccvvveevveeeeiiiciiiiieeeennn, 229
12.5.2. IBATIS SQL MBPS LX teiiuieiiieiiiiiieeeiiiiee e ssitiee e e siiee e s sitee e e s st e e e s snneeeesnnneeaeeanes 229
12.5.3. iIBATIS SQL MBPS 2.X .cuvvieieeiiiiieeeiitieeessiteeeeasittaaaessssaeeesasssaeeesanseseessnsneeeeanns 231
12,8, TP A e et — e e — e e e e e abe e e e e e bae e e e e naeeeeanteeeeearaeeeeanns 233
12.6.1. JPA setup in aSpring enNVIFONMENTcooiiiriieiiiiiieeeiiieee e ee e e sieeee e 233
12.6.2. JpaTenpl at e and
Lo T0 Yo LS U] o] o 1o o SR 236
12.6.3. Implementing DAOs based on plain JPAooiiiiiiieieee e 237
12.6.4. EXCeption Trangationcoeieiiiiiiiiiiiiie ettt e et e e 239
12.7. TransaCtion ManagEMENTcccoiuiiiieiiieie et e e e e e e st e e e sbreeeeanes 240
R S TN o 7= - = ot SRRSO 240
L. TREWWED <.t e e e et e e e e et e e e e e st e e e e estaeeeeaasaaeeesanreeeesssseaeeeanns 242
13. Web MV C frameWOIK ...ttt e e e e e e e e e e e e e neneneeas 243
G 30 O 1 oo [0 ot T o PP P U PPPPPUPPRR 243
13.1.1. Pluggability of other MV C implementationscoucereeeiiireeenniiieeesnneeee s 244
13.1.2. Featuresof Spring Web MV C ... 244
G T2 N o ol o Y o o] (Lo oY Y =] R 245
GG T @1 1o = £SO ERERR 249
13.3.1. Abstract Control | er and WebCont @nt GENEr AL OF oeeeeveeeeeieiiiiieieieieeeieeeeeeeeeaaeenns 250
13.3.2. Other SIMPIE CONTOIENSoeieiiiiie e 251
13.3.3. ThEMII ti ACti ONCONT T Ol 1 B eiiieeeeeeeeeeeeee e e e e e e 251
13.3.4. Command CONLIOIIEISeeeeiiiiie e e e e e e e 253
13.4. Handler MapPINGS ...coooeeiiiiiiiiiieee e e e e e e s et e e e e e e e s e st b br e e e e e e e s s sannbaeeeeaaeeeananes 254
13.4.1. BeanNanmeUr | Handl €r MAPPI NQ cevvvruueiieeeeeereiiiiiieeeeeeerenssnnssseeessessssnnneeeesesssssnnnn 255
13.4.2. Si npl eUr I HANAL €F MAPPI MO +unneriiiieeeeiieeee e e e e e e e e e e et e e s eeta e e e setaeeeseraaeeeerannns 256
13.4.3. Intercepting requests - the Handl er I nt er cept or interfaceccccceevvviviienenenn. 257
13.5. Viewsand resolViNg theM ..o 258
13.5.1. Resolving views - the Vi ewResol ver iNterfacecccccccvvvviiiiieiiie e, 258
13.5.2. Chaining VIEWRESOIVEI'Scoccuiiiiiiiiiiie ettt 259
13.5.3. ReAIr€CtiNg IO VIBWS ..ottt e s e e 260
13.6. USING IOCEIESoeiieiiiiiie ettt e e e et e e e s nbneeeeanes 261
13.6.1. Accept Header LoCal ERESOI VEI ..cuuiiiiiiiiiieeiiiieeeeeeie e e e e e e et e et e e e e eeeeaaaans 262
13.6.2. CoOki €LOCAI BRESOI VEI iiiiiiiiiiiiiiii e e e ee ettt e e e e e e e e e et e e e e e e e e e eas e e e e e e e e eeeeaaaas 262
13.6.3. Sessi 0NLOCAl ERESOI VEI .ivvuiieiiiiieeeiiie e ettt e et e et e e e et e e et e e e e et eeeeaaaans 262
13.6.4. Local €Changel Nt EF CEPL OF wuuuiivuiiereeiteeetiereeeeste e e et e e et e st e esaeeerneseteeraneeerans 263
13.7. USING TNEIMES ...ttt ettt e e e e e et e e e s nbne e e e e 263
G400 TR 1 11 oo LB o1 oo RSP 263
13.7.2. DEfININGTNEIMES ..o 263
13.7.3. TREMETESOIVEN'S ...coiieiiieieeiee ettt e e e e e e e et e e e e e e e e snneneeeeaaeens 264
13.8. Spring's multipart (fileupload) SUPPOITeeiieeeiiiiieiee e 264
GRS 10 R 1 11 oo [o1 oo PR 264
13.8.2. USINGthe Mul ti PArt RESOI VET iecceiiiciiiiieieeeee i e ettt e e e e e s e e e stvtaee e e e e e e s s sanrnrneeeae s 265
13.8.3. Handling afile upload in @fOrmccooiiiiiiiiniii e 265
13.9. Using Spring'sformtag liDrarycooooeeeeee e 268
13.9. 1. CONFIQUIBLION ...eeieiiiiiieeiiieie ettt ettt e e e e e e e ssb e e s nnnneeeeane 268
13.9.2. ThEFOr MEBY cuvveeeeeiiiiieeeeiiee et et e e st e e e st e e e s st e e e e nneeeeeannseeeeennsneeeeanns 268
e I T I I TT L - o RSP 270
13.9.4. The CheCKDOX T80 «..uvvvieeiiiiiee ettt e e e e e 270
13.9.5. Theradi 0bUt tON LA ...cccceviiiiiie e e e e e e s s sanrrr e e e eae s 271
13.9.6. The PasSSWOr d T80 «....vvveeeiieiiieeiii et e e e e e e e bneeeeene 272
13.9.7. ThESEl €Ct LA toiieieiie e e 272
13.9.8. THEOPL i ON TG .eeveiiteiieeiiiiie ettt e et eeeaae 272

Spring Framework (2.0) Vii

The Spring Framework - Reference Documentation

13.9.9. ThE 0Pt i ONS TAY .oeovveeieeiiiiie ettt e e e snre e e aae 273
13.9.10. Thetext area tagc.cccccviriiiie e e e e e e e s s st ereeae s 273
13.9.11. TRENI dden TAQ ..oouveeieeiiiiiee ettt e s e e e e e e e anes 273
13.9.12. TREErrors tAg cooveeieeiiiie i e e e e 274
13.10. HaNdliNG EXCEPLIONScciuuvriieiiiiiieeaiteie e e sttt e e et e e e st e e s sbe e e e s e e e e e b e e e s nnbneeeeann 275
13.11. Convention over CONFIQUIAIONcc.euueiiiiee e eiiiiiee e e e e e e ee e e e e e e e eeeeeaeeeeeennes 276
13.11.1. The Controller - Control | er O assNameHandl er MBPPi NG ..eeevvvevvveveereeeeeeeeenennn. 276
13.11.2. The Model - Model Map (Model ANAVi BW) .oueveeeeriiiiieeeiiiieeeeeiiiee e e e e sineee e 277
13.11.3. TheView - Request ToVi eWNANBTF @NS| @t OF ...vveeeviievereieeieeeerieeerieeseeeeeeeeesannns 278
13.12. FUINEr RESOUICESiieeiiiiiiiiiiiee e e e e e eeitiee et e e e e e s e ettt e e e e e e e s ss et aeaeeeaeeessssnnanneenaeeenannnes 279
14. Integrating View tEChNOIOGIESccoooiiii i 281
72 50 T 11T U o 1 o o PSPPI 281
LA.2. ISP & JSTL ot ettt ettt e e e st e e e e st e e e e ansae e e e e nnaeeeeanteeaeennrneeeeanns 281
T4.2. 1. VIBW FESOIVEIS ...eieiiiiiie e ittt ettt e ettt e sttt e e st e e sttt e e s st e e e s annbe e e e e nnbneeeeane 281
14.2.2. 'Plain-0ld' JSPSVEISUS JSTL ...ccuviiieiiiiiieeiiiiee e e eiiie e e s siaee e e ssnaae e e s snneneessnnneeeeanes 281
14.2.3. Additional tags facilitating developmentcccveeeeiieiiiiiciiee e, 282
I T T =SSOSR 282
G T T 3 1= o =T = o= 282
14.3.2. HOW tOIiNtEGrate TIlES .. .uuiiiiieiiee et e e 282
14.4. VElOCItY & FIEEMEIKENoveiieiiiiie e 283
I I D= o 0o (= g PP 283
14.4.2. Context CONFIQUIBLIONeveieiiiiie ettt e ettt e e e e e e e e aaes 284
14.4.3. Creating tEMPIELES ..ot e e e e a e e e 284
14.4.4. Advanced CONFIQUIBLIONoccuueiieiiiieie it e et eeanes 285
14.4.5. Bind support and form handlingccooeeeeeii i, 285
TS I PP PPPP PRSP 292
1451, MY FITSEWOITS ..ot e e 292
TA4.5.2. SUMIMAIY ceuuiiieiiiiieeeiiee e ettt e e e e ettt s e e e e e e e e eaetaa e s e e e e eeeaetasaaseeeeeeeensnnnnn 294
14.6. Document VIEWS (PDF/EXCE])uviiiiiiiiee ettt 294
I G0 T Voo [0 o o SR PRRRPPPRR 294
14.6.2. Configuration N0 SEIUDcccoourrieeiiiieee it et e et e e e e s e e sneeeeeanes 295

N 7= 0T (= 00 = 297
I T D 1= o 0o (= g o= SRR 297
14.7.2. CONFIQUIBLIONeeiiiiiiieeiieeee et e et e e s e e e e s e e s nnnee e e e e 297
14.7.3. Populating the Model ANAVI @Wooccuuviieiieeeeeicciiieee e e e e e e e e e e e s saarareeeea e 299
14.7.4. Working With SUD-REPOITSoviiiiiiiii e 300
14.7.5. Configuring EXporter Parametersccooeeeeiiiiie e 301

15. Integrating with other web frameworksoooiiiiiii e 302
G50 R g 110 o [T 1 oo PR 302
15.2. CommON CONFIGQUIBLIONuvviiiiieees ittt e e e e s s et e e e e e e et e e e e e e e e s snntr e e eeaeeeeannnes 302
15.3. JAVASEIVEN FBCES ...ociiiiiie ettt ettt e ettt e e e sttt e e e et e e e s et e e e ansaaeaeeentaeaeenrneeaeanns 304
15.3.1. DelegatingVariabl€RESOIVENcccuiiiiiiieici e 304
15.3.2. FaCeSCONtEXIULIIS ..ooeee et e e e e e 304
D54, SITULS ooieiteeeee ettt ettt e e ettt e e e ettt e e e nat e e e e ensbe e e e e ansaeeeeennneeeeeenbeeeeennrneeeeanns 305
15.4.1. ContextLoaderPIUGINoveieiiiiiie et 305
15.4.2. ACtiONSUPPOIT ClBSSESevveiiiiieeeiiaieiiiii e e e e e ettt e e e e e e e e eee e e e e e e e e anneaeeeeeaeens 307
T T =0 TSP 307
15.5.1. Injecting Spring-managed DEaNScouiiiiiiiiiiii 308

15.6. WEDWOTK ..ottt e e st e e e nnbneeeeane 313
15.7. FUMNEr RESOUICESciiieeiiiiiiiiiieie e e e e e e ettt e e e e e e et e e e e e e e s st ae e e e aeeessssstaaneenaeeesannnes 314
16. Portlet MV C FrameworK ...t e e e e e e e e e e e e nnneeeeas 315
350 R 11T [FTox 1 o o T RPPRR 315

Spring Framework (2.0) viii

The Spring Framework - Reference Documentation

16.1.1. Controllers- The CINMVC ..oooiiiiii e 316
16.1.2. VIewS-TheV INMVC ...ttt 316
16.1.3. WED-SCOPEA DEANSooiiiiiiiie e 316
16.2. TRE Di SPAt CHEI POM t1 B uiiieriiieietieieeiete e e e eete s e e set e e s seba s e s s e b e e s ssbb e sseba e ssebaaseesrananss 316
16.3. THE Vi @WRENTET €5 SEI VI B ieieiiiieiiiiee i e e ee ettt e e e e e e e et e et e s e e e s e e e aa b e s e e e e e e eesbaaaaneeeas 318
16.4. CONIOIIENS ...ttt e ettt e e e e e e et e e e e e e e e e ennneaeeaaaaeeeaannes 319
16.4.1. AbstractController and Portl et Cont @nt GENEr At OF eceeeeveeeieieieieieieieeeieeeaeeennns 320
16.4.2. Other SIMPIE CONTOIEISeeiiiiiiie e 321
16.4.3. Command CONLIOIEISuviieiiiiiie et saeeeeeanes 321
16.4.4. Portl et W appi NGCONT F Ol | ©F wevvuuuiiiiieeeiieeiiiiie s e e e e e e eeetates e e e e e e e e easraa e e e e e eeeeenennans 322
TSI o = o | = =0 o T 322
16.5.1. Port! et ModeHandl €r MAPPI NG ceevvruiiiieeeieieiiiiiaeeeeeeeeeersiaseeeeeseeessrana e eeeseessssnnnns 323
16.5.2. Par amet er HANAl €F MAPPI MO .uueeiiiuieeiiiie e e ee e e e e e et e e e e et e e e e et e e e e et e eeeesannns 323
16.5.3. Port| et ModePar anet er Handl €F MBPPI N oevureierniirnieieiieeieeeiiieesieeerneeereessneeennns 324
16.5.4. Adding Handl €r 1 Nt eI CEPL OF'S c.uuveieeiiiieeeeiiiree e ettt e e st e e s e e s e e e s e e e e e 324
16.5.5. Handl er 1 nt €r CEPt OF AAPL EF ovvuniiernieie e e e e e e e e e et e e e e e e e e e ean e eanns 325
16.5.6. Par anmet er Mappi NI Nt €F CEPL OF .vuuiiiieeeieeeiiiiiiieeeeeeeeeasriaseeeeeseeeasrnnaaeeeeseeeesennnns 325
16.6. Viewsand resolVING themM ..o 325
16.7. Multipart (file upload) SUPPOITceei it e e e e e e e e eanes 325
16.7.1. Using the Por t 1 et Mul ti part RESOI VBT ..ccoicuereieiiiiiieeesieeeessiieeeeesinee e e sinee e 326
16.7.2. Handling afileupload inaformccccoeiiiiiiii e, 326
16.8. HandliNg EXCEPLIONSccoiiiiieeiiiieie ettt e et e e et e e s e e e s et e e e s nnbneeeeanes 329
16.9. Portlet application deplOyMENT ...t e e 329
VR 1 411= | = (o TP PUPRRPRPPPPRPTN 330
17. Remoting and Web SErviCeS USING SPIING ..oeeeeeee i 331
0 O 1 oo [0 ot o o PP PPPP TP 331
17.2. EXpOSiNg SErVICES USING RMI .o 332
17.2.1. Exporting the service using the Rii Ser vi CEEXPOrt €rcocccvvvveeeeeeeeiiiiinvnneneeaenn 332
17.2.2. Linkingintheserviceat the Clientcooiiiiiiiiie e 333
17.3. Using Hessian or Burlap to remotely call servicesViaHTTPccccveveieeiiiiiiiiieeccceeeeees 333
17.3.1. Wiring up the DispatcherServlet for HESSIanccoovivveiiiiiieee e 333
17.3.2. Exposing your beans by using the HessianServiceEXporterccceeeeeeeeeeeeeeennn, 334
17.3.3. Linkingintheserviceontheclientccccccoiiiiiiiiiei e 334
17.3.4. USING BUITAD ...oeviiiiiiieeeee ettt 334
17.3.5. Applying HTTP basic authentication to a service exposed through Hessian or
BUITED e e e 334
17.4. Exposing services USINg HT TP INVOKELScciiiii i 335
17.4.1. EXPOSING the SErVICE ODJECTvvviiiiiiiie ettt 335
17.4.2. Linkingintheserviceat the Clientccoooeiiiiii i, 336
17.5. WED SEIVICES ..ottt e et e e e aae 336
17.5.1. Exposing services using JAX-RPCooiiiiiiiiiieie e 336
17.5.2. AcCeSSING WED SEIVICES ...ovviiiiieiiii e 337
17.5.3. Register BEan MapPINGScccorurriieiiiirieaiiirieeeaiieeeessiteeeessiseeeessnneeesssnneee e e 338
17.5.4. Registering our OWN HanNdIerccoooeiiiiiiii e 339
17.5.5. EXposing Web ServiceS USING XFITeueiiiiiiiiieiiiiie et 339
17.6. Auto-detection isnot implemented for remote interfacesccveeveveeeiiiccieinee e 340
17.7. Considerations when choosing atechnologycccceveviieiiiiiiiiiieee e 341
18. Enterprise Java Bean (EJB) INTEQralioncoooiiiiiieiiiiiieeiiiee et 342
S 30 O 1 oo [0 o i o) o PP PPPRSTPRRR 342
18.2. ACCESSING EIBS ...cooiiiiiiiiiiiiite ettt e e e 342
RS 202t T 0 o o £ P 342
18.2.2. ACCeSSING 10CEI SLSBSeiiiiiiiiie it 342

Spring Framework (2.0) iX

The Spring Framework - Reference Documentation

18.2.3. ACCESSING rEMOLE SLSBSciiiiiiiiiiiiiiiee ettt 344
18.3. Using Spring's convenience EJB implementation Classescc.vvveveeeeeiiiciiiieeeee e, 344
LS T 11V P 347
RS 0 R g 1o LU o1 oo PP PPPRP 347
19.2. USING SPIiNG IMS ..ottt e et e e e e e e e et e e e e nbneeeeann 348
1O.2. 1. JBTENPI AL E ceeiireiieeiiiie e et e e et e e e e et e e e et e e e e e et e e e e et e e e e et e e e eera e aeeraaans 348
19.2.2. CONNECLION FBCLOMY ...ttt e e e e e e e e st reeae s 348
19.2.3. Destination ManageMENTccuurieiiiiiiieeiie e e st e s e e e e aaes 348
19.2.4. Message Listener CONLAINELScccuviiiiieeeei e et e e e e e e e e sirtere e e e e e e s s santnreeeea e 349
19.2.5. Transaction MaNAgEMENTcooourriiiiiiieie et e e et e e e e e e e sbeeeeeaaes 350
19.3. SENAING AMESSAZEcce i e e e ———— 350
19.3.1. USINg MESSAFE CONVEITENS ...ocouiiiieeiiiiiieeeiieee ettt e et e s e e s e s e e e anes 351
19.3.2. SessionCal | back and Producer Cal | BACKccceeeeeieeevvviiieeeeeeeieeeiiiieeeeeeeeeeeerannns 352
19.4. RECEIVING BMESSAYE ...cceiiivvriieieeeeeeeeeittieeee e e e e e s s eeattaeeeeaaeesaasatbbaaeeeaeeesssnsstraeseeaeessananes 352
19.4.1. SynchronOUS RECEPLIONccciiuiiiieiiiii ettt e e 352
19.4.2. Asynchronous Reception - Message-Driven POJOSccccvvvevieeeeiiciiviieeeeenn, 352
19.4.3. The Sessi onAwar eMessageLi st ener iNterface ..., 353
19.4.4. The MessageLli St @Ner ADAPL EF ..uuucciieeeeiieeiiiiieeeeeeeeeeeretieeeeeeeeeeeeeraaaaeeeeeeeeessaanns 354
19.4.5. Participating in tranNSaCtiONScccuviiiiiee e e e e ea e 355
120 T 11V RSP 357
P20 0 T [1o [F o o o [PPSR 357
20.2. Exporting YOur DEANS O IMXccoiiiiiieiiiiiie ettt 357
20.2.1. Creating an MBEANSEIVENuvviiiieeeiiiiiiieiee et e e st e e e e e e e saareaes 358
20.2.2. Reusing an existing MBEaNSEIVESooviiiiiiiieiiiiee e 359
20.2.3. Lazy-initiaized MBEANScoooeiiiei i, 359
20.2.4. Automatic registration of MBEANScvvvveiieeiiiiiiiieiece e 360
20.2.5. Controlling the registration DENAVIONcccvviiiiiiiieiiee e 360
20.3. Controlling the management interface of your beanscccccoveiiiiieeie i, 361
20.3.1. The MBeanl nf oAssenbl er
F 1= = o= PR RSO PPRRPR 361
20.3.2. USINg SOUrce-Level MEtadalalccooiuvreeeiiiiiie et 361
20.3.3. Using IDK 5.0 ANNOLALIONScccoeeeieie i 363
20.3.4. Source-Level Metadata TYPES ...cccveeeiiiiiiiiiiieee e e et e e e e e 365
20.3.5. The Aut odet ect Capabl eMBeanl nf oAssenbl er
L= == USROS 366
20.3.6. Defining Management interfaces using Javainterfacescccoceevviiveeeiiinennn, 367
20.3.7. Using
Met hodNarmeBasedMBean! Nf OASSEMDI €I .uuuvviuiiiiiieiiiee it ieeseee e e et eeea e et eesaeesnneeees 368
20.4. Controlling the vj ect Nanes for your
DBANS ... 368
20.4.1. Reading Obj ect Nanesfrom
o oYL=y AT == TN 369
20.4.2. Using the Met adat aNami NGSET At €Y «.eeeeervrrrerreeeeiiisnrenerreeessssnnsrrnrereesessannsnennens 369
20.5. JSR-160 CONNECLOIScoeieiiieeee e 370
20.5.1. Server-side CONNECLOISuvviiieieeeiiiciiieiee e e e e e s s e e e e e e e s s st e e e e e e e e e nnnrenees 370
20.5.2. Client-Side CONNECLOISeueeeiiiieeei et ee e e e e e e et e e e e e e e et eeeae e e e e ennneeeeas 371
20.5.3. IMX over Burlap/HeSSIan/SOAP ...ttt 371
20.6. ACCeSSING MBEANS VIAPIOXIESuviiieiiiiiie ettt 371
20.7. NOUTICEHONS ...civeveieeiiiiiee et e st e e e st e e e e s st b e e e anbe e e e s anbbeeeeannneeeeas 372
20.7.1. Registering Listenersfor NOtifiCalioNSccceeeviiieieiiiiiiie e 372
20.7.2. Publishing NOLITICALIONSccoooeei i, 374
20.8. FUINEr RESOUITESuviiiiieeei i ittt e e e s s ettt e e e e e s e e e e e e e e e e st reeeeaaeeessnnsntaaeeeeaeeas 375

Spring Framework (2.0) X

The Spring Framework - Reference Documentation

121 T 1@ N O SRR 377
P20 50 T [1o [F o £ o o [PPSO RPN 377
21.2. CONFIQUITNG CCl ..ottt e e e e e et e e s anbb e e e nnnreee s 377

21.2.1. Connector CONFIQUIALiONccoeeeie e, 377
21.2.2. Connecti onFact ory CONfiguration in SPringcccueeeeiiireeeiniiiiee s 378
21.2.3. Configuring CCl CONNECLIONSceeeeiiiieiiiiiieeee e e e e e e e e e e e e et e e e e e e e e e eeneeeeas 378
21.2.4. Using asingle CCl CONNECLIONccooiiiuiiiiiiiiee et e e e e e e 379
21.3. Using Spring's CCl @CCESS SUPPOITcceuurreeeiiiiieeeaiieeeessieeeeeaissee e s s eeesannneeeesnnnneeens 379
21.3.1. RECOIA CONVEISIONuvviiieiiiiiieeesiitieesstteeeesssbeeeessstaeeessssseeeesansseeeessnseeeesannnseeens 380
21.3.2. ThECCI TEMPI AL coeeeeeieee e e, 380
P24 TG TG T D 7 AN @ = o] o 382
21.3.4. Automatic output reCord gENEIaHIONccoiiuurieerriieeeeiiieie et e s e e 382
21.3.5. SUMMEIY ..eeieeiiiiiee e ettt e e e eiee e e et e e e st e e e e st eeeesstaeeeeanssneeeeansseeeeesnseeneeannsseeens 382
21.3.6. Using aCCl connectionandinteraction dir€Ctlyccccceeoviiiiiiiieneeeiniiiiinnen, 383
21.3.7. Examplefor Cci Tenpl at € USAJEcccuiurrreeiiiiieeeeiiieeesaiineeesssree e e s ee e nenneee s 384
21.4. Modeling CCl access as Operation ODJECLSccieeiiiiiiiiiieecce e 386
21.4.1. Mappi NGRECOT AODET AL I ON tevvvuriiieeeeeeeietiiisseeeeeeeeetata e e eeaeeeeetaa e eeeaeeeessnnnaeaeas 386
21.4.2. Mappi NgCONMMAr @ACPET AL T DN ceevtueeeiii e eeiiiieee e et e eeeeet e eeeesteeeeestseesestnaaeeestnaaanes 386
21.4.3. Automatic output record geNErationc.eeeeeeeieiciiiiereeee e s s e e e e e e 387
2044, SUMMEBIY ..eeieeiutiieeeeeiieeeeaaieeeeeesseeeeeeaseeeeeaansteaeeaassseeeeanssneeeaansseeaesansseneeannssneens 387
21.4.5. Example for Mappi ngRecor dQper ati on USAQEccuvvvverreeeesiiiiniireeeeeeeeesesnnnnnens 387
21.4.6. Example for Mappi ngConmAr ea0per ati 0N USAgEevvvverrereeeseinerieeeereeeesseneneenens 389
215, TIANSACHIONS ...eeiuitiieeeieiiiee e ettt e e ettt e e e sttt e e ettt e e e e st e e e s snteeeeeaansseeeeaneeeeeeansseeeeannneeeens 390

22. The Spring email abStraction [QYErc.eeeiiiiiiiieiiee e 392
122728 N 1 1 L1 o 1 o o SR 392
22.2. Spring mail abStraCtion SITUCLUNEcooiiiiiiiieicee et e e 392
22.3. Using the Spring mail aDStraCtionccooiiiiiiieeiiiie e 393

22.3.1. Pluggable Mai | Sender impleMEntationscooccvviieiieeeeicciciiieeee e, 395
22.4. Using the JavaMail M meMeSSAgeHE! PEI .uvuviieiiieeeeiiiiiiieieeeee e e e s eiereeer e e e e s s s senreneeeeeeens 395
22.4.1. Creatingasimple M meMessage and SENding itcccvveeieeieiiiiiiiiieee e, 395
22.4.2. Sending attachments and iNliNE rESOUICEScooiireeeiiiiiiee et 396

23. Scheduling and Thread Pooling USING SPring ...oooooeeeee i, 397
P22 50 T [1o 18 o o o I PP OP PRI 397
23.2. Using the OpenSymphony Quartz SChedulerccoveoiiiiiieii e 397

23.2.1. Using the JODDELAIBEENccoiueiiiiiiiiiie i 397
23.2.2. Using the Met hodl nvoki ngJobDet @i | FACt OF YBEAN ..vvvvvvrireeesiiieiiieeeeeeeesseneeennnns 398
23.2.3. Wiring up jobs using triggers and the Schedul er Fact oryBeanccoeeeeeeeeeennn. 398
23.3. USING IDK TIMEY SUPPOIT ...uieieieiiiieie e et ee e sttt e st e et e s e e s st e e e s nnbn e e e s nnnneee s 399
23.3.1. Creating CUStOM LIMELS ...ccooiiiii i, 399
23.3.2. Using the Met hodl nvoki ngTi mer TaskFact 0 YBEANueevveeereiiiuriveeeeeeessesisnennens 400
23.3.3. Wrapping up: setting up the tasks using the Ti mer Fact or yBeancccccevvvveeen. 400
23.4. The Spring TaskExecut or @DSLFACtIONc.uvviiiiiiie i 401
23.4.1. The TaskExecut or INEITACEuuiiiiiiii i 401
23.4.2. WhErEtO USE ATASKEXECUL OF .vuuiieeeeeieiiiiiieieeeeeeeettitiaeeeeeeseeestiaaseeeeeseesrarneans 401
23.4.3. TASKEXECUL OF TYPES .ooiiiiiiiiiiiei ettt e sttt e e e e e et e e e e e e e nnneenes 401
23.4.4. USING A TASKEXECUL OF 1eeeeiiieeiiiiieraeeseaanttieeeeaaeeesaanneeaeeeaeeesssanssaneeeaaaeeaaasneenees 402

24, DyNamicC language SUPPOITeuiieeieie oo ii ettt e e e e e e e e e e e e e e s s st e e e e e e e s ssntb e e eeeaeessennnnranees 404
P2 R 1 1 L o 1 o o SO 404
24.2. A TIrSE @XAMPIE ... e e e aaaeas 404
24.3. Defining beans that are backed by dynamic 1anguagesccceveeveiiiiiiec i, 406

24.3.1. COMIMON CONCEPLSuieeieeeeeiiiie s e e e e e e ettt s e e e e e e e e et s e e e e e e ee et e e e e e eeeneannnnaeees 406
24.3.2. JRUDY DEENS ..o 410

Spring Framework (2.0) Xi

The Spring Framework - Reference Documentation

24.3.3. GIOOVY DEAINSoeiiiiiiiiieiiiit ettt e e st e e e e s 412

24.3.4. BaANSE DEANS ... 414

D ol o= RSO 415
24.4.1. Scripted Spring MV C Controllers ..., 415

24.4.2. SCIHPLed ValiUAOrSeeeiiiiiiiii ettt 416

245, FUMNEr RESOUITESeeiiiiee ettt ettt e e e e e e et e e e e e e s e ettt e e e aeeeeeanneeneeeaaeess 417

25. Annotationsand Source Level Metadata SUPPOITovvvieeieeeeiiiiiier e 418
P2 T N 1 1 LH o o o RSP 418
25.2. Spring's MEtadata SUPPOITvviiiieriee e e i et e e e e e e s e e e e e e e e st r e e e e e e e s s sanrraeeeeaeeas 419

P2 TG T AN 210 = (o] USSR 420
P I B (2 Y U I =Y OO 420

25.3.2. Other @ANNOLELIONS IN SPIING .oo.vvveeeiiiiieee et 421

25.4. Integration with Jakarta Commons AttribULESoooiiiiiiiieeee e 421

25.5. Metadata and Spring AOP aUtOPIrOXYiNGevvvereeeeeesiiiiiinrereeeeesssiiirreeeeeseesssssnssneeeeaees 423
25.5.1. FUNAAMENTAISeiiiiiiiiie e e e e e e e e e e e e e e e e e st e e e e e e s e e nnsneenes 423

25.5.2. Declarative transaction Managementeeeeeeeiiiiiiiieeeeeeeessiiiireeee e e e e e e e sanenees 423

25.5.3. POOLING ...ttt 424

25.5.4. CUSIOM MELAOAEAeeviieeeiiieiieie e et e e e e e e e e 424

25.6. Using attributes to minimize MV C web tier configurationcccccceveeeeiiiicciiienenenn, 425

25.7. Other uses of metadata attribULESooiceeiiiiiieee e 427

25.8. Adding support for additional metadata APIS ..o, 427

A. XML Schema-based CONFIQUIALTIONuueiiiiiiiiieiiiii et e s e e s reeeeaaes 429
N R 1 11 oo 0o o RSP STPRRR 429
A.2. XML Schema-hased CONfIQUIALioNooiiiuiiiiiiiiiie et 429
A.2.1. Referencing the SCNEMESuuiiiiiiiiiiiiiiiiiiireeerere e rrrrrerrrrrrrrrrrrnnes 429
A.2.2. TREULI I SCREIMA ...eiiiiiiiiiie et e et e e st e e e e nnees 430
G T N o (Y o= TE o 1= 0 = Rt 436
A.24. TREI ANG SCREMA ... e e e e e e e e e e 439
A.2.5. Thetx (transaction) SCHEMAccoiiuiiieiiiiie et 439
A.2.6. THE AP SCNEIMAot e e e e e et e e e e e s e eebab e as 440

y N B 1 1] O oY g 1 = PSSR 440
A.2.8. ThEbeans SCNEMAoovuuiii it e e e e e e et 440

A3, SENGUPYOUN IDEt e e e e e e s e et e e e e e e e s e santeaeeeeaeeas 441
A.3.L SettiNg UP ECHIPSE ..o 441
A.3.2. Settingup INEEIITIDEA ..o e a e e e 443
A.3.3. INTEGraLION ISSUBSeiiiiiiiieeiiiie e ettt ettt e ettt e ettt e e e et e e e e sn b e e e e asbe e e e e annb e e e e e nnees 446

T (015 1 o L= 1Y/ U 11] 447
= OO 1 04 o [(o) PSR P 447
B.2. AULhOrNG the SCREMA ... 447
B.3. CodiNg aNAMESPACEHANG €5 ...vvviiiiieeeiiiiiiiieieeeeeesssetteaeeeeeeessas it raeeeaaeessssantsaereeeeeessannssrnnees 448
B.4. Coding 8BeanDef i Ni ti ONPAI SEI ...utiiiiiiiieeiiiieee e st ee e et e e e s ssber e e s st e e e e aasne e e e s anneeeessnereeeaae 449
B.5. Registeringthe handler and the SChemaooooiiiiiiiiic e, 450
T T Y o 7 I o o G o TR g =Y o L =Y oS 450
B.5.2. VETA- I NF/ SPriNg. SCHEMAS cievuiiieiiiiiiiiiiiieeee et e et e e e s et e e s e e et e s e s s et s e st e raneranaas 450

C. SPrinNg-DEANS-2. 0. AL A .ueiiiieeiiiiiiiiiies et e ee et e ettt er e s e eeeeeeett e e eeeeeeeeestata s eeeeeeesesstannaaeeeeererstnnnsaaaaaeeenns 451
[TR o 1 oo 81 O RPRRR 460
[200 1 1o (U ot o o PP UPPPPORTPRP 460
[I 0= TN I = o PP PP PP PUPPPP PP 460
D.3. TheescapeBody TA0iiiieiiiiiiiiiieiiee e e e s ettt e e e e e e e e st e e e e e e e e s se bt re e e e e aeesssssntrrereeeeeeesannsnrneees 461
D.4. ThehasBi NAET T OF'S TA0 ..eeeiiutieeeeiiiiiee ettt e ettt e e e e e e et e e e e st e e e s asbb e e e e esae e e e s annnreeeaae 461
[T I TN (Yo Vo T= o 462
D.6. THEMESSAGE TAY ..vveiiiitiiieiiiiiie ettt ettt e sttt ettt e e ekt e e e s bt e e e abb e e e e e nbn e e e e anbneeeeaan 462

Spring Framework (2.0) Xii

The Spring Framework - Reference Documentation

D.7. Thenest @dPat N TAQuveeeiiiieie ettt et e et e e e st e e e e s b e e e e e e e e e s anneree e e 463
D.8. TREUTNEIE LAY +riitteiiiiie ittt et s e e e e e e e b e e e nn e e nre e 463
D.9. Thet ransf Or MIAQ «..ooueeeie ittt e ekt e e st e e e s b e e e e e nbe e e e s anrnreeeaae 464
E. SOMNG-TOMMLEIA L. ——————— 466
E.L INEOQUCTION ...ttt e et nn e s b e 466
R I ST o (=Y oT T3 = SRS 466
G T I Y=Y e TR - o PR EPRRP 469
S I o8 o111 = PSP P PP PUPPPP PP 471
I I (Y (TR o =Y T - o PP 473
E.B. TRE I NPUL T8O 1oieeeiieeiieie etttk e e et e e e e b e e e e e bbn e e e e anrnreeeaan 474
S N 0TI oY I = o [OO O PPPTOUPROPR 477
E.8. TR OPL i ON T8O .uvveiiiiiiiie ettt ettt e e e st e e s b e e e e b e e e s anbn e e e e e 479
IS T I XY o e 0 R 7o SRS 480
E.10. The passWord T80 ..uueeieeeeiiiiiiiieiee i ee e e s s ettt e e e e e s st e e e e e e s s et e e e e e e e e e s snnbbaneeeeeeeesnnsnrnnees 480
E.11. THEr adi ODUL T 0N TAO ..vttiiiiiiiie ettt ettt e et e e e e e e e s e e e e e e e e e annereeeaae 483
E.12. THESEI @Ct TBO ..uvvrriiiiiieiiiiiiiie et e e e e e e ettt e e e e e e e et e e e e e e e e s e at b e e e e eaeesesssntbbeeeeeaeeesanssrnens 486
E.13. THET Xt ar € T80 «iiiieeeiieiiiiiie ettt e e e e e e b e e e e e e e e e e e e aan 489

Spring Framework (2.0) Xiii

Preface

Developing software applications is hard enough even with good tools and technologies. Implementing
applications using platforms which promise everything but turn out to be heavy-weight, hard to control and not
very efficient during the development cycle makes it even harder. Spring provides a light-weight solution for
building enterprise-ready applications, while still supporting the possibility of using declarative transaction
management, remote access to your logic using RMI or web services, and various options for persisting your
data to a database. Spring provides a full-featured MV C framework, and transparent ways of integrating AOP
into your software.

Spring could potentially be a one-stop-shop for al your enterprise applications, however, Spring is modular,
allowing you to use just those parts of it that you need, without having to bring in the rest. Y ou can use the |oC
container, with Struts on top, but you could also choose to use just the Hibernate integration code or the JDBC
abstraction layer. Spring has been (and continues to be) designed to be non-intrusive, meaning dependencies on
the framework itself are generally none (or absolutely minimal, depending on the area of use).

This document provides a reference guide to Spring's features. Since this document is still to be considered
very much work-in-progress, if you have any requests or comments, please post them on the user mailing list or
on the support forums at http://forum.springframework.org/.

Before we go on, a few words of gratitude are due to Christian Bauer (of the Hibernate team), who prepared
and adapted the DocBook-XSL software in order to be able to create Hibernate's reference guide, thus aso
allowing usto create this one. Also thanks to Russell Healy for doing an extensive and valuable review of some
of the material.

Spring Framework (2.0) Xiv

http://forum.springframework.org/
http://www.hibernate.org/

Chapter 1. Introduction

Background

In early 2004, Martin Fowler asked the readers of his site: when talking about Inversion of Control: “the
guestion is, what aspect of control are [they] inverting?’. Fowler then suggested renaming the principle
(or at least giving it a more self-explanatory name), and started to use the term Dependency Injection. His
article then continued to explain the ideas underpinning the Inversion of Control (1oC) and Dependency
Injection (DI) principle.

If you need a decent insight into loC and DI, please do refer to said article
http://martinfowl er.com/articles/injection.html.

Java applications (aloose term which runs the gamut from constrained applets to full-fledged n-tier server-side
enterprise applications) typically are composed of a number of objects that collaborate with one another to form
the application proper. The objects in an application can thus be said to have dependencies between themselves.

The Java language and platform provides a wealth of functionality for architecting and building applications,
ranging all the way from the very basic building blocks of primitive types and classes (and the means to define
new classes), to rich full-featured application servers and web frameworks. One area that is decidedly
conspicuous by its absence is any means of taking the basic building blocks and composing them into a
coherent whole; this area has typically been left to the purvey of the architects and developers tasked with
building an application (or applications). Now to be fair, there are a number of design patterns devoted to the
business of composing the various classes and object instances that makeup an all-singing, al-dancing
application. Design patterns such as Factory, Abstract Factory, Builder, Decorator, and Service Locator (to
name but a few) have widespread recognition and acceptance within the software development industry
(presumably that is why these patterns have been formalized as patternsin the first place). Thisis all very well,
but these patterns are just that: best practices given a name, typically together with a description of what the
pattern does, where the pattern is typically best applied, the problems that the application of the pattern
addresses, and so forth. Notice that the last paragraph used the phrase “... a description of what the pattern
does...”; pattern books and wikis are typically listings of such formalized best practice that you can certainly
take away, mull over, and then implement yourself in your application.

The 10C component of the Spring Framework addresses the enterprise concern of taking the classes, objects,
and services that are to compose an application, by providing a formalized means of composing these various
disparate components into a fully working application ready for use. The Spring Framework takes best
practices that have been proven over the years in numerous applications and formalized as design patterns, and
actually codifies these patterns as first class objects that you as an architect and developer can take away and
integrate into your own application(s). This is a Very Good Thing Indeed as attested to by the numerous
organizations and institutions that have used the Spring Framework to engineer robust, maintainable
applications.

1.1. Overview

The Spring Framework contains a lot of features, which are well-organized in seven modules shown in the
diagram below. This chapter discusses each of the modulesin turn.

Spring Framework (2.0) 15

http://martinfowler.com/articles/injection.html

Introduction

ORM Web

DAO

Hibernate Sorina Web MVC
_ pring We
Spring JDBC T;;I:?nk J E E Framework Integratior
Transaction JDO Struts
management 0JB WebWork
iBatis JMX Tapestry
JMS JSF
JCA Rich View Support
Remoting JSPs
EJBs Velocity
Email FreeMarker
PDF
Jasper Reports
AOP

Spring Portlet MVC

Spring AOP
Aspectd integration

Core

The loC container

Overview of the Spring Framework

The Core package is the most fundamental part of the framework and provides the 10C and Dependency

Spring Framework (2.0) 16

Introduction

Injection features. The basic concept here is the BeanFact ory, which provides a sophisticated implementation
of the factory pattern which removes the need for programmatic singletons and allows you to decouple the
configuration and specification of dependencies from your actual program logic.

On top of the Core package sits the Context package, which provides a way to access objects in a
framework-style manner in afashion somewhat reminiscent of a INDI-registry. The context package inheritsits
features from the beans package and adds support for internationalization (I118N) (using for example resource
bundles), event-propagation, resource-loading, and the transparent creation of contexts by, for example, a
servlet container.

The DAO package provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding and
parsing of database-vendor specific error codes. Also, the JIDBC package provides away to do programmatic as
well as declarative transaction management, not only for classes implementing special interfaces, but for all
your POJOs (plain old Java objects).

The ORM package provides integration layers for popular object-relational mapping APIs, including JPA, JDO,
Hibernate, and iBatis. Using the ORM package you can use all those O/R-mappers in combination with all the
other features Spring offers, such as the simple declarative transaction management feature mentioned
previoudly.

Spring's AOP package provides an AOP Alliance-compliant aspect-oriented programming implementation
allowing you to define, for example, method-interceptors and pointcuts to cleanly decouple code implementing
functionality that should logically speaking be separated. Using source-level metadata functionality you can
also incorporate all kinds of behavioral information into your code, in a manner similar to that of .NET
attributes.

Spring's Web package provides basic web-oriented integration features, such as multipart file-upload
functionality, the initialization of the 10C container using servlet listeners and a web-oriented application
context. When using Spring together with WebWork or Struts, this is the package to integrate with.

Spring's MVC package provides a Model-View-Controller (MVC) implementation for web-applications.
Spring's MV C framework is not just any old implementation; it provides a clean separation between domain
model code and web forms, and allows you to use al the other features of the Spring Framework.

1.2. Usage scenarios

With the building blocks described above you can use Spring in al sorts of scenarios, from applets up to
fully-fledged enterprise applications using Spring's transaction management functionality and web framework
integration.

Spring Framework (2.0) 17

Introduction

Form Controllers Multipart Resolver Dynamic binding of Integration with JSP,
handling form part data to the domain Velocity, XSLT, PDF,
3 . to handle file uploads
interaction model Excel

Spring Web MVC
\

‘ WebApplicationContext providing e.g. messaging

N

Spring Web
—‘ Declarative transaction management for POJOs Remote
Sending access via
Email . Hession,
Spring Context Burlap, SOAP
Custom business logic
Spring AOP Spring ORM

Hibernate mappings
Custom Hibernate DAOs

Spring Core Spring DAO

Servlet Container (Tomcat / Jetty)

Typical full-fledged Spring web application

By using Spring's declarative transaction management features the web application is fully transactional, just as
it would be when using container managed transactions as provided by Enterprise JavaBeans. All your custom
business logic can be implemented using ssimple POJOs, managed by Spring's 10C container. Additional
services include support for sending email, and validation that is independent of the web layer enabling you to
choose where to execute validation rules. Spring's ORM support is integrated with JPA, Hibernate, JDO and
iBatis; for example, when using Hibernate, you can continue to use your existing mapping files and standard
Hibernate Sessi onFact ory configuration. Form controllers seamlessly integrate the web-layer with the domain
model, removing the need for Act i onFor s Or other classes that transform HTTP parameters to values for your
domain model.

Web frontend using
Struts or WebWork

Spring WEB

Spring AOP Spring ORM

Transaction management
Using Spring decl. trans.

Hibernate mappings
Custom Hibernate DAOs

Spring Core Spring DAO

Servlet Container (Tomcat / Jetty)

Spring middle-tier using a third-party web framework

Sometimes the current circumstances do not allow you to completely switch to a different framework. Spring
does not force you to use everything within it; it's not an all-or-nothing solution. Existing front-ends built using

Spring Framework (2.0) 18

Introduction

WebWork, Struts, Tapestry, or other Ul frameworks can be integrated perfectly well with a Spring-based
middle-tier, allowing you to use the transaction features that Spring offers. The only thing you need to do is
wire up your business logic using an ApplicationContext and integrate your web layer using a
WebAppl i cat i onCont ext .

RMI

JAX RPC client Hessian client Burlap client .
client

Transparent remote access (using remote package)

Custom logic contained by beans

Spring Core Spring Context

Servlet Container (e.g. Tomcat / Jetty)

Remoting usage scenario

When you heed to access existing code via web services, you can use Spring's Hessi an-, Burl ap-, Rni- Of
JaxRpcProxyFactory classes. Enabling remote access to existing applications is suddenly not that hard
anymore.

EJB Access layer using
Slsbinvokers

Spring-managed EJBs S GO

Spring Core Spring DAO

Application Server (e.g. JBoss, WebLogic)

EJBs - Wrapping existing POJOs

Spring also provides an access- and abstraction- layer for Enterprise JavaBeans, enabling you to reuse your
existing POJOs and wrap them in Stateless Session Beans, for use in scalable, failsafe web applications that
might need declarative security.

Spring Framework (2.0) 19

Chapter 2. What's new in Spring 2.07?

2.1. Introduction

If you have been using the Spring Framework for some time, you will be aware that Spring has just undergone
amajor revision.

JDK Support

The Spring Framework continues to be totally compatible with al versions of Java since (and including)
Java 1.3. This means that 1.3, 1.4, and 1.5 are supported, although some advanced functionality of the
Spring Framework may not be available to you if you are (for example) committed to using Java 1.3.

This revision includes a host of new features, and a lot of the existing functionality has been reviewed and
improved. In fact, so much of Spring is shiny and improved that the Spring development team decided that the
next release of Spring merited an increment of the version number; and so Spring 2.0 was announced in
December 2005 at the Spring Experience conference in Florida

This chapter is a guide to the new and improved features of Spring 2.0. It is intended to provide a high-level
summary so that seasoned Spring architects and developers can become immediately familiar with the new
Spring 2.0 functionality. For more in-depth information on the features, please refer to the corresponding
sections hyperlinked from within this chapter.

Some of the new and improved functionality described below has been (or will be) backported into the Spring
1.2.x release line. Please do consult the changelogs for the 1.2.x releases to see if afeature has been backported.

2.2. The Inversion of Control (IoC) container

One of the areas that contains a considerable number of 2.0 improvementsis Spring's |oC container.

2.2.1. Easier XML configuration

Spring XML configuration is now even easier, thanks to the advent of the new XML configuration syntax
based on XML Schema. If you want to take advantage of the new tags that Spring provides (and the Spring
team certainly suggest that you do because they make configuration less verbose and easier to read), then do
read the section entitled Appendix A, XML Schema-based configuration.

On arelated note, there is anew, updated DTD for Spring 2.0 that you may wish to reference if you cannot take
advantage of the XML Schema-based configuration. The DOCTY PE declaration is included below for your
convenience, but the interested reader should definitely read the ' spri ng- beans-2. 0. dtd" DTD included in
the' di st/ resources' directory of the Spring 2.0 distribution.

<! DOCTYPE beans PUBLIC "-//SPRI NG / DTD BEAN 2. 0// EN'
"http://ww. springframework. org/ dtd/spring-beans-2.0.dtd">

2.2.2. New bean scopes

Spring Framework (2.0) 20

http://www.thespringexperience.com/

What's new in Spring 2.0?

Previous versions of Spring had 0C container level support for exactly two distinct bean scopes (singleton and
prototype). Spring 2.0 improves on this by not only providing a number of additional scopes depending on the
environment in which Spring is being deployed (for example, request and session scoped beans in a web
environment), but also by providing 'hooks' (for want of a better word) so that Spring users can create their own
SCOpeES.

It should be noted that although the underlying (and internal) implementation for singleton- and
prototype-scoped beans has been changed, said change is totally transparent to the end user... no existing
configuration needs to change, and no existing configuration will break.

Both the new and the original scopes are detailed in the section entitled Section 3.4, “Bean scopes”.

2.2.3. Extensible XML authoring

Not only is XML configuration easier to write, it isnow also extensible.

What 'extensible’ means in this context is that you, as an application developer, or (more likely) as athird party
framework or product vendor, can write custom tags that other developers can then plug into their own Spring
configuration files. This allows you to have your own domain specific language (the term is used loosely here)
of sorts be reflected in the specific configuration of your own components.

Implementing custom Spring tags may not be of interest to every single application developer or enterprise
architect using Spring in their own projects. We expect third-party vendors to be highly interested in
devel oping custom configuration tags for use in Spring configuration files.

The extensible configuration mechanism is documented in Appendix B, Extensible XML authoring.

2.3. Aspect Oriented Programming (AOP)

Spring 2.0 has a much improved AOP offering. The Spring AOP framework itself is markedly easier to
configure in XML, and significantly less verbose as a result; and Spring 2.0 integrates with the Aspect]
pointcut language and @Aspect] aspect declaration style. The chapter entitled Chapter 6, Aspect Oriented
Programming with Spring is dedicated to describing this new support.

2.3.1. Easier AOP XML configuration

Spring 2.0 introduces new schema support for defining aspects backed by regular Java objects. This support
takes advantage of the AspectJ pointcut language and offers fully typed advice (i.e. no more casting and
vj ect[] argument manipulation). Details of this support can be found in the section entitled Section 6.3,
“ Schema-based AOP support”.

2.3.2. Support for @AspectJ aspects
Spring 2.0 also supports aspects defined using the @A spectJ annotations. These aspects can be shared between

Aspectd and Spring AOP, and require (honestly!) only some simple configuration. Said support for @AspectJ
aspectsis discussed in Section 6.2, “ @A spectJ support”.

2.4. The Middle Tier

Spring Framework (2.0) 21

What's new in Spring 2.0?

2.4.1. Easier configuration of declarative transactions in XML

The way that transactions are configured in Spring 2.0 has been changed significantly. The previous 1.2.x style
of configuration continues to be valid (and supported), but the new style is markedly less verbose and is the
recommended style. Spring 2.0 aso ships with an AspectJ aspects library that you can use to make pretty much
any object transactional - even objects not created by the Spring 10C container.

The chapter entitled Chapter 9, Transaction management contains all of the details.

2.4.2. JPA

Spring 2.0 ships with a JPA abstraction layer that is similar in intent to Spring's JDBC abstraction layer in
terms of scope and general usage patterns.

If you are interested in using a JPA-implementation as the backbone of your persistence layer, the section

entitled Section 12.6, “JPA” is dedicated to detailing Spring's support and value-add in this area.

2.4.3. Asynchronous JMS

Prior to Spring 2.0, Spring's IMS offering was limited to sending messages and the synchronous receiving of
messages. This functionality (encapsulated in the JmsTenpl ate class) is great, but it doesn't address the
requirement for the asynchronous receiving of messages.

Spring 2.0 now ships with full support for the reception of messages in an asynchronous fashion, as detailed in
the section entitled Section 19.4.2, “ Asynchronous Reception - Message-Driven POJOS'.

2.4.4.IJDBC

There are some small (but nevertheless notable) new classes in the Spring Framework's JDBC support library.
The first, NamedPar anet er JdbcTenpl at e, provides support for programming JDBC statements using named
parameters (as opposed to programming JDBC statements using only classic placeholder (' ?*) arguments.

Another of the new classes, the Si npl eJdbcTenpl at e, is amed at making using the JdbcTenpl at e even easier
to use when you are developing against Java 5+ (Tiger).

2.5. The Web Tier

The web tier support has been substantially improved and expanded in Spring 2.0.

2.5.1. A form tag library for Spring MVC

A rich JSP tag library for Spring MV C was the JIRA issue that garnered the most votes from Spring users (by a
wide margin).

Spring 2.0 ships with a full featured JSP tag library that makes the job of authoring JSP pages much easier
when using Spring MV C; the Spring team is confident it will satisfy all of those developers who voted for the
issue on JIRA. The new tag library isitself covered in the section entitled Section 13.9, “Using Spring's form
tag library”, and a quick reference to all of the new tags can be found in the appendix entitled Appendix E,
spring-form.tld.

Spring Framework (2.0) 22

What's new in Spring 2.0?

2.5.2. Sensible defaulting in Spring MVC

For alot of projects, sticking to established conventions and having reasonable defaultsis just what the projects
need... this theme of convention-over-configuration now has explicit support in Spring MV C. What this means
isthat if you establish a set of naming conventions for your Control | ers and views, you can substantially cut
down on the amount of XML configuration that is required to setup handler mappings, view resolvers,
Model AndVi ew instances, etc. Thisis a great boon with regards to rapid prototyping, and can aso lend a degree
of (always good-to-have) consistency across a codebase.

Spring MVC's convention-over-configuration support is detailed in the section entitled Section 13.11,
“Convention over configuration”

2.5.3. Portlet framework
Spring 2.0 ships with a Portlet framework that is conceptually similar to the Spring MV C framework. Detailed

coverage of the Spring Portlet framework can be found in the section entitled Chapter 16, Portlet MVC
Framework.

2.6. Everything else

Thisfinal section outlines al of the other new and improved Spring 2.0 features and functionality.

2.6.1. Dynamic language support
Spring 2.0 now has support for beans written in languages other than Java, with the currently supported

dynamic languages being JRuby, Groovy and BeanShell. This dynamic language support is comprehensively
detailed in the section entitled Chapter 24, Dynamic language support.

2.6.2. IMX

The Spring Framework now has support for Noti fi cati ons; it is also possible to exercise declarative control
over the registration behavior of MBeans with an MBeanSer ver .

* Section 20.7, “Notifications”

» Section 20.2.5, “Controlling the registration behavior”

2.6.3. Task scheduling

Spring 2.0 offers an abstraction around the scheduling of tasks. For the interested devel oper, the section entitled
Section 23.4, “The Spring TaskExecut or abstraction” contains all of the details.

2.6.4. Java 5 (Tiger) support

If you are one of the lucky few to be developing projects using Java 5 (Tiger), you will be pleased to know that
Spring 2.0 now has some compelling support for Tiger. Below is a set of pointers to Spring Java 5-only
features.

Spring Framework (2.0) 23

What's new in Spring 2.0?

e Section 9.5.8, “Using @r ansact i onal with AspectJ’

e Section 6.8.1, “Using AspectJ to dependency inject domain objects with Spring”
» Section 6.2, “ @A spectJ support”

e Section 25.3.1, “ @Requi r ed”

* Section 11.2.3, “Si npl eJdbcTenpl at e”

2.7. Migrating to Spring 2.0

Thisfinal section details issues that may arise during any migration from Spring 1.2.x to Spring 2.0.

Feel free to take this next statement with a pinch of salt, but upgrading to Spring 2.0 from a Spring 1.2
application should simply be a matter of dropping the Spring 2.0 jar into the appropriate location in your
application's directory structure.

The keyword from the last sentence was of course the “should”. Whether the upgrade is seamless or not
depends on how much of the Spring APIs you are using in your code. Spring 2.0 removed pretty much al of
the classes and methods previously marked as deprecated in the Spring 1.2.x codebase, so if you have been
using such classes and methods, you will of course have to use aternative classes and methods (some of which
are summarised below).

With regards to configuration, Spring 1.2.x style XML configuration is 100%, satisfaction-guaranteed
compatible with the Spring 2.0 library. Of course if you are still using the Spring 1.2.x DTD, then you won't be
able to take advantage of some of the new Spring 2.0 functionality (such as scopes and easier AOP and
transaction configuration), but nothing will blow up.

The suggested migration strategy isto drop in the Spring 2.0 jar(s) to benefit from the improved code present in
the release (bug fixes, optimisations, etc.). Y ou can then, on an incremental basis, choose to start using the new
Spring 2.0 features and configuration. For example, you could choose to start configuring just your aspects in
the new Spring 2.0 style; it is perfectly valid to have 90% of your configuration using the old-school Spring
1.2.x configuration (which references the 1.2.x DTD), and have the other 10% using the new Spring 2.0
configuration (which references the 2.0 DTD or XSD). Bear in mind that you are not forced to upgrade your
XML configuration should you choose to drop in the Spring 2.0 libraries.

2.7.1. Changes

For a comprehensive list of changes, consult the ' changel og. txt* file that is located in the top level directory
of the Spring Framework 2.0 distribution.

2.7.1.1. Jar packaging

The packaging of the Spring Framework jars has changed quite substantially between the 1.2.x and 2.0 releases.
In particular, there are now dedicated jars for the JDO, Hibernate 2/3, TopLink ORM integration classes: they
are no longer bundled in the core ' spring.jar' fileanymore.

2.7.1.2. XML configuration

Spring 2.0 ships with XSDs that describe Spring's XML metadata format in a much richer fashion than the
DTD that shiiped with previous versions. The old DTD is still fully supported, but if possible you are

Spring Framework (2.0) 24

What's new in Spring 2.0?

encouraged to reference the X SD files at the top of your bean definition files.

One thing that has changed in a (somewhat) breaking fashion is the way that bean scopes are defined. If you are
using the Spring 1.2 DTD you can continue to use the ' si ngl et on' attribute. You can however choose to
reference the new Spring 2.0 DTD which does not permit the use of the ' si ngl et on' attribute, but rather uses
the' scope' attribute to define the bean lifecycle scope.

2.7.1.3. Deprecated classes and methods

A number of classes and methods that previously were marked as @epr ecat ed have been totally removed from
the Spring 2.0 codebase. The Spring team decided that the 2.0 release marked a fresh start of sorts, and that any
deprecated 'cruft’ was better excised now instead of continuing to haunt the codebase for the forseeable future.

As mentioned previoudly, for a comprehensive list of changes, consult the* changel og. t xt* file that is located
in the top level directory of the Spring Framework 2.0 distribution.

The following classes/interfaces have all been removed from the Spring 2.0 codebase.

* Resul t Reader : use the Rowvapper interface instead.
* BeanRef er enceFact or yBean : use the available alias mechanisms instead

e BeanDefi ni ti onRegi st ryBui | der : use the convenience methods on the BeanDef i ni ti onReader Uti | s class
instead

e BeanFact or yBoot st rap : consider using aBeanFact or yLocat or OF a custom bootstrap class instead

* Request Utils :USeServl et Request Uil s instead

2.7.1.4. Apache 0OJB

Please note that support for Apache OJB was totally removed from the main Spring source tree; the Apache
OJB integration library is still available, but can be found in it's new home in the Spring Modules project.

2.7.1.5. iBatis

Please note that support for iIBATIS SQL Maps 1.3 has been totally removed. If you haven't done so already,
upgrade to iBATIS SQL Maps 2.0/2.1.

2.8. Updated sample applications

A number of the sample applications have also been updated to showcase the new and improved features of
Spring 2.0, so do take the time to investigate them. The aforementioned sample applications can be found in the
" sanpl es' directory of the full Spring distribution (* spri ng-wi t h- dependeci es. [zi p| tar. gz] ').

Said distribution also ships with a number of so-called showcase applications. Each showcase application
provides fully working examples, focussed on demonstrating exactly one new Spring 2.0 feature at atime. The
idea is that you can take the code in these showcases and experiment with it, as opposed to having to create
your own small project to test out each new Spring 2.0 feature. Please be advised that the scope of these
showcase applications is deliberately limited; the domain model (if there even is one) consists of maybe one or
two classes, and typical enterprise concerns such as security and transactional integrity are deliberately omitted.

Spring Framework (2.0) 25

https://springmodules.dev.java.net/

What's new in Spring 2.0?

2.9. Improved documentation

The Spring reference documentation has also substantially been updated to reflect all of the above features new
in Spring 2.0.

While every effort has been made to ensure that there are no errors in this documentation, some errors may
nevertheless have crept in. If you do spot any typos or even more serious errors, and you can spare afew cycles
during lunch, please do bring the error to the attention of the Spring team by raising an issue.

Special thanks to Arthur Loder for his tireless proofreading of the Spring Framework reference documentation
and Javadocs.

Spring Framework (2.0) 26

http://opensource.atlassian.com/projects/spring/

Part |. Core Technologies

This initial part of the reference documentation covers all of those technologies that are absolutely integral to
the Spring Framework.

Foremost amongst these is the Spring Framework's Inversion of Control (10C) container. A thorough treatment
of the Spring Framework's 1oC container is closely followed by comprehensive coverage of Spring's
Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP framework,
which is conceptually easy to understand, and which successfully addresses the 80% sweet spot of AOP
requirements in Java enterprise programming.

Coverage of Spring's integration with AspectJ (currently the richest - in terms of features - and certainly most
mature AOP implementation in the Java enterprise space) is also provided.

Finally, the adoption of the test-driven-development (TDD) approach to software development is certainly
advocated by the Spring team, and so coverage of Spring's support for integration testing is covered (alongside
best practices for unit testing). The Spring team have found that the correct use of 10C certainly does make both
unit and integration testing easier (in that the presence of setter methods and appropriate constructors on classes
makes them easier to wire together on a test without having to set up service locator registries and suchlike)...
the chapter dedicated solely to testing will hopefully convince you of this aswell.

e Chapter 3, The loC container

¢ Chapter 4, Resources

« Chapter 5, Validation, Data-binding, the Beanw apper , and Pr oper t yEdi t or s
e Chapter 6, Aspect Oriented Programming with Spring

e Chapter 7, Soring AOP APIs

» Chapter 8, Testing

Spring Framework (2.0) 27

Chapter 3. The loC container

3.1. Introduction

This chapter is devoted to covering (in detail) the Spring Framework's implementation of the Inversion of
Control (1oC) ! principle. |oC underpins a lot of the surrounding functionality that is provided by the Spring
Framework as a whole, and so a thorough treatment of this rich, yet conceptually very simple, technology isin
order.

Which interface?

Users are sometimes unsure whether aBeanFact ory Or an Appl i cat i onCont ext iS best suited for usein a
particular situation. Normally when building most applications in a J2EE-environment, the best option is
to use the Appl i cati onCont ext , since it offers all the features of the BeanFact ory, while also allowing a
more declarative approach to the use of some functionality, which is generally desirable.

The org. springframewor k. beans and org. spri ngfranmewor k. cont ext packages provide the basis for the
Spring Framework's 10C container. The BeanFact or y interface provides an advanced configuration mechanism
capable of managing objects of any nature. The ApplicationContext interface builds on top of the
BeanFactory (it is a sub-interface) and adds other functionality such as easier integration with Spring's AOP
features, message resource handling (for use in internationalization), event propagation, and application-layer
specific contexts such as the WebAppl i cat i onCont ext for use in web applications.

In short, the BeanFactory provides the configuration framework and basic functiondlity, while the
Appl i cati onCont ext adds more enterprise-centric functionality to it. The Appl i cati onCont ext iS a complete
superset of the BeanFact ory, and any description of BeanFact ory capabilities and behavior is to be considered
to apply to the Appl i cat i onCont ext aswell.

This chapter is divided into two parts, with the first part covering the basic principles that apply to both the
BeanFact ory and Appl i cat i onCont ext , and with the second part covering those features that apply only to the
Appl i cati onCont ext interface.

3.2. Basics - containers and beans

In Spring, those objects that form the backbone of your application and that are managed by the Spring 10C
container are referred to as beans. A bean is simply an object that typically is instantiated, assembled and
otherwise managed by a Spring 10C container; other than that, there is nothing special about a bean (it isin all
other respects one of probably many objects in your application). These beans, and the dependencies between
them, are reflected in the configuration metadata used by a container.

Why... bean?

The motivation for using the name 'bean’, as opposed to ‘component’ or 'object’ is rooted in the origins of
the Spring Framework itself (it arose partly as a response to the complexity of Enterprise JavaBeans).

1See the section entitled Background

Spring Framework (2.0) 28

http://www.springframework.org/docs/api/org/springframework/beans/factory/BeanFactory.html
http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html

The 1oC container

3.2.1. The container

The org. springfranmewor k. beans. factory. BeanFactory IS the actual representation of the Spring 10C
container that is responsible for containing and otherwise managing the aforementioned beans.

The BeanFactory interface is the central 10C container interface in Spring. Its responsibilities include
instantiating or sourcing application objects, configuring said objects, and assembling the dependencies
between these objects.

There are a number of implementations of the BeanFact ory interface that come supplied straight out-of-the-box
with Spring. The most commonly used BeanFactory implementation is the Xm BeanFactory class. This
implementation allows you to express the objects that compose your application, and the doubtless rich
interdependencies between such objects, in terms of XML. The Xni BeanFact ory takes this XML configuration
metadata and uses it to create a fully configured system or application.

Your Business Objects (PO.JOs)

» The Sprin
Configuration Cuntapine:’g
Metadata
oroduces

Fully configured system

Ready for Use

The Spring 1oC container

3.2.1.1. Configuration metadata

As can be seen in the above image, the Spring |10C container consumes some form of configuration metadata;
this configuration metadata is nothing more than how you (as an application developer) inform the Spring
container as to how to “instantiate, configure, and assemble [the objects in your application]”. This
configuration metadata is typically supplied in a simple and intuitive XML format. When using XM L-based
configuration metadata, you write bean definitions for those beans that you want the Spring 10C container to
manage, and then let said container do its stuff.

Note
e

XML-based metadata is by far the most commonly used form of configuration metadata. It is not
however the only form of configuration metadata that is allowed. The Spring 10C container itself is
totally decoupled from the format in which this configuration metadata is actually written.

Spring Framework (2.0) 29

The 1oC container

At the time of writing, you can supply this configuration metadata using either XML, the Java
properties format, or programmatically (using Spring's public API). The XML-based configuration
metadata format really is simple though, and so the remainder of this chapter will use the XML
format to convey key concepts and features of the Spring 10C container.

Resources

Once you have learned the basics of the |oC container (this chapter), it will also be useful to learn about
Spring's Resour ce abstraction, as described in Chapter 4, Resour ces.

The location path or paths supplied to an Appl i cati onCont ext constructor are actually resource strings
that allow the container to load configuration metadata from a variety of externa resources such as the
local file system, from the Java CLASSPATH, €tc.

Please be advised that in the vast majority of application scenarios, explicit user code is not required to
instantiate one or more instances of a Spring 10C container. For example, in a web application scenario, a
simple eight (or so) lines of absolutely boilerplate J2EE web descriptor XML in the attendant web. xni file of
the application will typically suffice (see Section 3.8.4, “Convenient Appl i cat i onCont ext instantiation for web
applications”).

At its most basic level, a Spring 10C container configuration consists of the definition of at least one bean that
the container must manage, but typically there will be more than one bean definition. When using XML -based
configuration metadata, these beans are configured as one or more <bean/> elements inside a top-level
<beans/ > €lement.

These bean definitions correspond to the actual objects that make up your application(s). Typically you will
have bean definitions for your service layer objects, your data access objects (DAOs), presentation objects such
as Struts Acti on instances, infrastructure objects such as Hibernate Sessi onFactory instances, IMS Queue
references, etc. (the possibilities are of course endless and are limited only by the scope and complexity of your
application).

Find below an example of the basic structure of XML-based configuration metadata.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd" >

<bean id="..." class="...">
<I'-- collaborators and configuration for this bean go here -->
</ bean>
<bean id="..." class="...">
<l-- coll aborators and configuration for this bean go here -->
</ bean>
<!-- nore bean definitions go here... -->
</ beans>

3.2.2. Instantiating a container

Instantiating a Spring 10C container is easy; find below some examples of how to do just that:

Resource resource = new Fil eSyst enResour ce("beans. xm ") ;
BeanFactory factory = new Xm BeanFactory(resource);

Spring Framework (2.0) 30

The 1oC container

. Or...

Cl assPat hResource resource = new Cl assPat hResource("beans. xm ") ;
BeanFactory factory = new Xml BeanFact ory(resource);

. Or...

Appl i cati onCont ext context = new C assPat hXm Appl i cati onCont ext (

new String[] {"applicationContext.xm", "applicationContext-part2.xm"});
/] of course, an ApplicationContext i S just a BeanFactory
BeanFactory factory = (BeanFactory) context;

3.2.2.1. Composing XML-based configuration metadata

It can often be useful to split up container definitions into multiple XML files. One way to then load an
application context which is configured from all these XML fragments is to use the application context
constructor which takes multiple Resour ce locations. With a bean factory, a bean definition reader can be used
multiple timesto read definitions from each file in turn.

Generally, the Spring team prefers the above approach, since it keeps container configuration files unaware of
the fact that they are being combined with others. An alternate approach is to use one or more occurrences of
the <i nport /> element to load bean definitions from another file (or files). Any <i nport /> elements must be
placed before <bean/ > elements in the file doing the importing. Let's look at a sample:

<beans>
<import resource="services.xm"/>

<i nmport resource="resources/ messageSour ce. xm "/ >
<inmport resource="/resources/themeSource. xm "/ >

<bean i d="beanl" class="..."/>
<bean i d="bean2" class="..."/>
</ beans>

In this example, externa bean definitions are being loaded from 3 files, servi ces. xm , messageSource. xni ,
and t hemeSour ce. xm . All location paths are considered relative to the definition file doing the importing, so
servi ces. xnl in this case must be in the same directory or classpath location as the file doing the importing,
while messageSour ce. xm and t hemeSour ce. xni must be in aresources location below the location of the
importing file. As you can see, a leading slash is actually ignored, but given that these are considered relative
paths, it is probably better form not to use the dlash at al.

The contents of the files being imported must be fully valid XML bean definition files according to the Schema

or DTD, including the top level <beans/ > element.

3.2.3. The beans

As mentioned previously, a Spring 10C container manages one or more beans. These beans are created using
the instructions defined in the configuration metadata that has been supplied to the container (typically in the
form of XML <bean/ > definitions).

Within the container itself, these bean definitions are represented as BeanDef i niti on objects, which contain
(among other information) the following metadata:

» a package-qualified class name: thisis normally the actual implementation class of the bean being defined.

Spring Framework (2.0) 31

The 1oC container

However, if the bean is to be instantiated by invoking a st ati ¢ factory method instead of using a normal
constructor, thiswill actually be the class name of the factory class.

* bean behavioral configuration elements, which state how the bean should behave in the container (i.e.
prototype or singleton, autowiring mode, dependency checking mode, initialization and destruction methods)

e constructor arguments and property values to set in the newly created bean. An example would be the
number of connections to use in a bean that manages a connection pool (either specified as a property or as a
constructor argument), or the pool size limit.

« other beans which are needed for the bean to do its work, i.e. collaborators (also called dependencies).

The concepts listed above directly translate to a set of properties that each bean definition consists of. Some of

these properties are listed below, along with alink to further documentation about each of them.

Table 3.1. The bean definition

Feature Explained in...
class

Section 3.2.3.2, “Instantiating beans”
name

Section 3.2.3.1, “Naming beans”
scope

Section 3.4, “Bean scopes’

constructor arguments

properties

autowiring mode

Section 3.3.1, “Injecting dependencies’

Section 3.3.1, “Injecting dependencies’

Section 3.3.6, “ Autowiring collaborators”

dependency checking mode

lazy-initialization mode

Section 3.3.7, “Checking for dependencies’

Section 3.3.5, “Lazily-instantiating beans’

initialization method

destruction method

Section 3.5.1, “Lifecycle interfaces’

Section 3.5.1, “Lifecycle interfaces’

Besides bean definitions which contain information on how to create a specific bean, certain BeanFact ory
implementations also permit the registration of existing objects that have been created outside the factory (by
user code). The Defaul tLi stabl eBeanFactory class supports this through the registerSingleton(..)

method. Typica applications solely work with beans defined through metadata bean definitions, though.

3.2.3.1. Naming beans

Bean naming conventions

Spring Framework (2.0)

32

The 1oC container

The convention (at least amongst the Spring development team) is to use the standard Java convention for
instance field names when naming beans. That is, bean names start with a lowercase letter, and are
camel-cased from then on. Examples of such names would be (without quotes) ' account Manager ',
"account Servi ce','userDao','loginController', eC.

Adopting a consistent way of naming your beans will go a long way towards making your configuration
easier to read and understand; adopting such naming standards is not hard to do, and if you are using
Spring AOP it can pay off handsomely when it comes to applying advice to a set of beans related by
name.

Every bean has one or more ids (also called identifiers, or names; these terms refer to the same thing). Theseids
must be unique within the container the bean is hosted in. A bean will ailmost aways have only oneid, but if a
bean has more than one id, the extra ones can essentially be considered aliases.

When using XML-based configuration metadata, you use the 'id' or ' nane' attributes to specify the bean
identifier(s). The 'id" attribute allows you to specify exactly one id, and as it is a real XML element 1D
attribute, the XML parser is able to do some extra validation when other elements reference the id; as such, it is
the preferred way to specify a bean id. However, the XML specification does limit the characters which are
legal in XML IDs. This is usually not a constraint, but if you have a need to use one of these special XML
characters, or want to introduce other aliases to the bean, you may also or instead specify one or more bean ids,
separated by acomma (,), semicolon (;), or whitespacein the* name' attribute.

Please note that you are not required to supply a name for a bean. If no name is supplied explicitly, the
container will generate a (unique) name for that bean. The motivations for not supplying a name for a bean will
be discussed later (one use caseisinner beans).

3.2.3.1.1. Aliasing beans

In a bean definition itself, you may supply more than one name for the bean, by using a combination of up to
one name specified viathei d attribute, and any number of other namesviatheal i as attribute. All these names
can be considered equivalent aliases to the same bean, and are useful for some situations, such as allowing each
component used in an application to refer to a common dependency using a bean name that is specific to that
component itself.

Having to specify all aliases when the bean is actually defined is not always adequate however. It is sometimes
desirable to introduce an dias for a bean which is defined elsewhere. In XML-based configuration metadata
this may be accomplished viathe use of the standalone <al i as/ > element. For example:

<alias nanme="fromNane" alias="toNane"/>

In this case, a bean in the same container which is named ' fromNane' , may also after the use of this alias
definition, bereferred to as' t oNane' .

As a concrete example, consider the case where component A defines a DataSource bean called
componentA-dataSource, in its XML fragment. Component B would however like to refer to the DataSource as
componentB-dataSource in its XML fragment. And the main application, MyApp, defines its own XML
fragment and assembles the final application context from all three fragments, and would like to refer to the
DataSource as myApp-dataSource. This scenario can be easily handled by adding to the MyApp XML
fragment the following standal one aliases:

<al i as nanme="conponent A- dat aSour ce" al i as="conponent B- dat aSour ce"/ >
<al i as nane="conponent A- dat aSour ce" al i as="nyApp-dat aSource" />

Spring Framework (2.0) 33

The 1oC container

Now each component and the main app can refer to the dataSource via a name that is unique and guaranteed
not to clash with any other definition (effectively there is a namespace), yet they refer to the same bean.

3.2.3.2. Instantiating beans

So far as a Spring 1oC container is concerned, a bean definition is basically a recipe for creating one or more
actual objects. The container looks at the recipe for a named bean when asked, and uses the configuration
metadata encapsulated by that bean definition to go off and reflectively create an actual object. This section is
thus concerned with communicating to you, the application developer, how you inform a Spring 10C container
both what type (or class) of abject to instantiate and how to instantiate the resulting object.

If you are using XML-based configuration metadata, you can specify the type (or class) of object that is to be
instantiated using the ' cl ass' attribute of the <bean/> element. This ' cl ass' attribute (which internally
eventually boils down to being a d ass property on a BeanDefi ni ti on instance) is normally mandatory (see
Section 3.2.3.2.3, “Ingtantiation using an instance factory method” and Section 3.6, “Bean definition
inheritance” for the two exceptions) and is used for one of two purposes. The class property specifies the class
of the bean to be constructed in the much more common case where the container itself directly creates the
bean by calling its constructor reflectively (somewhat equivalent to Java code using the 'new' operator). In the
less common case where the container invokes ast at i ¢, factory method on a class to create the bean, the class
property specifies the actual class containing the stati ¢ factory method that is to be invoked to create the
object (the type of the object returned from the invocation of the st at i ¢ factory method may be the same class
or another class entirely, it doesn't matter).

3.2.3.2.1. Instantiation using a constructor

When creating a bean using the constructor approach, all normal classes are usable by and compatible with
Spring. That is, the class being created does not need to implement any specific interfaces or be coded in a
specific fashion. Just specifying the bean class should be enough. However, depending on what type of 10C you
are going to use for that specific bean, you may need a default (empty) constructor.

Additionally, the Spring 10C container isn't limited to just managing true JavaBeans, it is also able to manage
virtually any class you want it to manage. Most people using Spring prefer to have actual JavaBeans (having
just a default (no-argument) constructor and appropriate setters and getters modeled after the properties) in the
container, but it is also possible to have more exotic non-bean-style classes in your container. If, for example,
you need to use a legacy connection pool that absolutely does not adhere to the JavaBean specification, Spring
can manage it aswell.

When using XML -based configuration metadata you can specify your bean class like so:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"/ >

<bean nane="anot her Exanpl " cl ass="exanpl es. Exanpl eBeanTwo"/ >

The mechanism for supplying arguments to the constructor (if required), or setting properties of the object
instance after it has been constructed, will be described shortly.

3.2.3.2.2. Instantiation using a stati c factory method

When defining a bean which is to be created using a static factory method, along with the cl ass attribute which
specifies the class containing the st at i ¢ factory method, another attribute named f act or y- net hod iS needed to
specify the name of the factory method itself. Spring expects to be able to call this method (with an optional list
of arguments as described later) and get back alive object, which from that point on istreated as if it had been
created normally via a constructor. One use for such a bean definition isto call st ati ¢ factoriesin legacy code.

Spring Framework (2.0) 34

The 1oC container

The following example shows a bean definition which specifies that the bean is to be created by calling a
factory-method. Note that the definition does not specify the type (class) of the returned object, only the class
containing the factory method. In this example, the cr eat el nst ance() method must be a static method.

<bean i d="exanpl eBean"
cl ass="exanpl es. Exanpl eBean2"
factory- met hod="creat el nst ance"/ >

The mechanism for supplying (optional) arguments to the factory method, or setting properties of the object
instance after it has been returned from the factory, will be described shortly.

3.2.3.2.3. Instantiation using an instance factory method

In afashion similar to instantiation via a static factory method, instantiation using an instance factory method is
where the factory method of an existing bean from the container isinvoked to create the new bean.

To use this mechanism, the ' cl ass' attribute must be left empty, and the ' f act ory-bean' attribute must
specify the name of a bean in the current (or parent/ancestor) container that contains the factory method. The
factory method itself must still be set viathe' f act ory- net hod' attribute (as seen in the example below).

<I-- the factory bean, which contains a method call ed createlnstance() -->
<bean i d="nyFact oryBean" class="...">

</ bean>

<l-- the bean to be created via the factory bean -->

<bean i d="exanpl eBean"
fact ory- bean="nmyFact or yBean"
factory- met hod="creat el nst ance"/ >

Although the mechanisms for setting bean properties are still to be discussed, one implication of this approach
isthat the factory bean itself can be managed and configured viaDI.

3.2.4. Using the container

A BeanFact ory is essentially nothing more than the interface for an advanced factory capable of maintaining a
registry of different beans and their dependencies. The BeanFact ory enables you to read bean definitions and
access them using the bean factory. When using just the BeanFact ory you would create one and read in some
bean definitionsin the XML format as follows:

InputStreamis = new Fil el nput Strean("beans. xm ");
BeanFactory factory = new Xm BeanFactory(is);

Basically that's all there is to it. Using get Bean(String) you can retrieve instances of your beans; the
client-side view of the BeanFact ory is surprisingly simple. The BeanFact or y interface has only six methods for
client codeto call:

* bool ean cont ai nsBean(Stri ng): returnstrueif the BeanFact ory contains a bean definition or bean instance
that matches the given name

e (nvject getBean(String): returns an instance of the bean registered under the given name. Depending on
how the bean was configured by the BeanFact ory configuration, either a singleton and thus shared instance
or anewly created bean will be returned. A BeansExcept i on will be thrown when either the bean could not
be found (in which case it'll be a NoSuchBeanDefi niti onException), Of an exception occurred while
instantiating and preparing the bean

Spring Framework (2.0) 35

The 1oC container

e (nbject getBean(String, C ass): returns abean, registered under the given name. The bean returned will
be cast to the given Class. If the bean could not be cast, corresponding exceptions will be thrown
(BeanNot Of Requi r edTypeExcept i on). Furthermore, all rules of the getBean(String) method apply (see
above)

e Class getType(String nane): returnsthe d ass of the bean with the given name. If no bean corresponding
to the given name could be found, a NoSuchBeanDef i ni ti onExcept i on Will be thrown

* bool ean isSingleton(String): determines whether or not the bean definition or bean instance registered
under the given name is a singleton (bean scopes such as singleton are explained later). If no bean
corresponding to the given name could be found, a NoSuchBeanDef i ni ti onExcept i on Will be thrown

e String[] getAliases(String): Returnthe aiases for the given bean name, if any were defined in the bean
definition

3.3. Dependencies

Y our typical enterprise application is not made up of a single object (or bean in the Spring parlance). Even the
simplest of applications will no doubt have at least a handful of objects that work together to present what the
end-user sees as a coherent application. This next section explains how you go from defining a number of bean
definitions that stand-alone, each to themselves, to a fully realized application where objects work (or
collaborate) together to achieve some goal (usually an application that does what the end-user wants).

3.3.1. Injecting dependencies

The basic principle behind Dependency Injection (DI) is that objects define their dependencies (i.e. the other
objects they work with) only through constructor arguments, arguments to a factory method, or properties
which are set on the object instance after it has been constructed or returned from a factory method. Then, it is
the job of the container to actually inject those dependencies when it creates the bean. Thisis fundamentally the
inverse, hence the name Inversion of Control (1oC), of the bean itself being in control of instantiating or
locating its dependencies on its own using direct construction of classes, or something like the Service Locator
pattern.

It becomes evident upon usage that code gets much cleaner when the DI principle is applied, and reaching a
higher grade of decoupling is much easier when beans do not look up their dependencies, but are provided with
them (and additionally do not even know where the dependencies are located and of what actual classthey are).

As touched on in the previous paragraph, DI exists in two major variants, namely Setter Injection, and
Constructor Injection.

3.3.1.1. Setter Injection

Setter-based DI is realized by calling setter methods on your beans after invoking a no-argument constructor or
no-argument st at i ¢ factory method to instantiate your bean.

Find below an example of a class that can only be dependency injected using pure setter injection. Note that
there is nothing special about thisclass... it isplain old Java.
public class SinpleMyvielLister {

/1 the sinpleMvielister has a dependency on the MvieFinder
private MyvieFi nder novi eFi nder;

/'l a setter nethod so that the Spring container can 'inject' a MvieFinder

Spring Framework (2.0) 36

The 1oC container

public void set MoveFi nder (Movi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;
}

/1 business logic that actually 'uses' the injected MvieFinder is omtted...

3.3.1.2. Constructor Injection

Constructor-based DI is realized by invoking a constructor with a number of arguments, each representing a
collaborator. Additionally, calling a st ati ¢ factory method with specific arguments to construct the bean, can
be considered amost equivalent, and the rest of this text will consider arguments to a constructor and
argumentsto ast at i ¢ factory method similarly.

Find below an example of a class that could only be dependency injected using constructor injection. Again,
note that there is nothing special about this class.
public class SinpleMvieLister {

/] the sinpleMvieLister has a dependency on the MvieFinder
private MyvieFi nder novi eFi nder;

/1 a constructor so that the Spring container can 'inject' a MovieFinder

publ i c Si npl eMovi eLi st er (Movi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder;
}

/] business logic that actually 'uses' the injected MmvieFinder is omtted...

Constructor- or Setter-based DI?

The Spring team generally advocates the usage of setter injection, since a large number of constructor
arguments can get unwieldy, especially when some properties are optional. The presence of setter
methods also makes objects of that class amenable to being re-configured (or re-injected) at some later
time (for management viaJMX MBeansis a particularly compelling use case).

Constructor-injection is favored by some purists though (and with good reason). Supplying al of an
object's dependencies means that that object is never returned to client (calling) code in aless than totally
initialized state. The flipside is that the object becomes |ess amenable to re-configuration (or re-injection).

There is no hard and fast rule here. Use whatever type of DI makes the most sense for a particular class;
sometimes, when dealing with third party classes to which you do not have the source, the choice will
already have been made for you - a legacy class may not expose any setter methods, and so constructor
injection will be the only type of DI available to you.

The BeanFact ory supports both of these variants for injecting dependencies into beans it manages. (It in fact
also supports injecting setter-based dependencies after some dependencies have already been supplied via the
constructor approach.) The configuration for the dependencies comes in the form of a BeanDef i ni ti on, which
is used together with propert yEdi t or instances to know how to convert properties from one format to another.
However, most users of Spring will not be dealing with these classes directly (i.e. programmatically), but rather
with an XML definition file which will be converted internally into instances of these classes, and used to load
an entire Spring 10C container instance.

Bean dependency resolution generaly happens as follows:

Spring Framework (2.0) 37

The 1oC container

1. The BeanFact ory is created and initialized with a configuration which describes al the beans. (Most Spring
USErs use a BeanFact ory OF Appl i cati onCont ext implementation that supports XML format configuration
files.)

2. Each bean has dependencies expressed in the form of properties, constructor arguments, or arguments to the
static-factory method when that is used instead of a normal constructor. These dependencies will be
provided to the bean, when the bean is actually created.

3. Each property or constructor argument is either an actual definition of the value to set, or a reference to
another bean in the container.

4. Each property or constructor argument which is a value must be able to be converted from whatever format
it was specified in, to the actual type of that property or constructor argument. By default Spring can convert
avalue supplied in string format to al built-in types, such asi nt, | ong, St ri ng, bool ean, €tc.

It is important to realize that Spring validates the configuration of each bean in a container as the container is
created, including the validation that properties which are bean references are actually referring to valid beans
(i.e. the beans being referred to are also defined in the container. However, the bean properties themselves are
not set until the bean is actually created. For that which are singleton-scoped and set to be pre-instantiated
(such as singleton beans in an Appl i cat i onCont ext), creation happens at the time that the container is created,
but otherwise this is only when the bean is requested. When a bean actually has to be created, this will
potentialy cause a graph of other beans to be created, as its dependencies and its dependencies dependencies
(and so on) are created and assigned.

Circular dependencies

If you are using predominantly constructor injection it is possible to write and configure your classes and
beans such that an unresolvable circular dependency scenario is created.

Consider the scenario where you have class A, which requires an instance of class B to be provided via
constructor injection, and class B, which requires an instance of class A to be provided via constructor
injection. If you configure beans for classes A and B to be injected into each other, the Spring 10C
container will detect this circular reference a runtime, and throw a
BeanCurrentl| yl nCreati onExcepti on.

One possible solution to this issue is to edit the source code of some of your classes to be configured via
setters instead of via constructors. Another solution is not to use constructor injection and stick to setter
injection only.

You can generaly trust Spring to do the right thing. It will detect mis-configuration issues, such as references
to non-existent beans and circular dependencies, at container load-time. It will actualy set properties and
resolve dependencies (i.e. create those dependencies if needed) as late as possible, which is when the bean is
actually created. This means that a Spring container which has loaded correctly can later generate an exception
when you request a bean if there is a problem creating that bean or one of its dependencies. This could happen
if the bean throws an exception as a result of a missing or invalid property, for example. This potentially
delayed visibility of some configuration issues is why ApplicationContext implementations by default
pre-instantiate singleton beans. At the cost of some upfront time and memory to create these beans before they
are actually needed, you find out about configuration issues when the Appl i cat i onCont ext is created, not later.
If you wish, you can still override this default behavior and set any of these singleton beans to lazy-initialize
(i.e. not be pre-instantiated).

Finally, if it is not immediately apparent, it is worth mentioning that when one or more collaborating beans are

Spring Framework (2.0) 38

The 1oC container

being injected into a dependent bean, each collaborating bean is totally configured prior to being passed (via
one of the DI flavors) to the dependent bean. This means that if bean A has a dependency on bean B, the Spring
IoC container will totally configure bean B prior to invoking (for example) the attendant setter method on bean
A; you can read 'totally configure' to mean that the bean will be instantiated (if not a pre-instantiated singleton),
all of its dependencies will be set, and the relevant lifecycle methods (such as a configured init method or the
IntializingBean callback method) will al be invoked.

3.3.1.3. Some examples

First, an example of using XML-based configuration metadata for setter-based DI. Find below a small part of a
Spring XML configuration file specifying some bean definitions.

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<l-- setter injection using the nested <ref/> el ement -->
<property name="beanOne"><ref bean="anot her Exanpl eBean"/></ property>

<I-- setter injection using the neater 'ref' attribute -->
<property nanme="beanTwo" ref="yet Anot her Bean"/ >
<property name="integerProperty" val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

privat e Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

public void set BeanOne(Anot her Bean beanOne) {
thi s. beanOne = beanOne
}

public void set BeanTwo(Yet Anot her Bean beanTwo) {
thi s. beanTwo = beanTwo;

}

public void setlntegerProperty(int i) {
this.i =1i;

}

Asyou can see, setters have been declared to match against the properties specified in the XML file.

Now, an example of using constructor-based DI. Find below a snippet from an XML configuration that
specifies constructor arguments, and the corresponding Java class.
<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<l-- constructor injection using the nested <ref/> el enent -->
<constructor-arg><ref bean="anot her Exanpl eBean"/ ></ construct or - ar g>

<!-- constructor injection using the neater 'ref' attribute -->
<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg type="int" val ue="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne

Spring Framework (2.0) 39

The 1oC container

private Yet Anot her Bean beanTwo;
private int i;

publ i ¢ Exanpl eBean(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
thi s. beanOne = anot her Bean
t hi s. beanTwo = yet Anot her Bean
this.i =1i;

Asyou can see, the constructor arguments specified in the bean definition will be used to passin as arguments
to the constructor of the Exanpl eBean.

Now consider a variant of this where instead of using a constructor, Spring is told to call a static factory
method to return an instance of the object:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"
factory-net hod="cr eat el nst ance" >
<constructor-arg ref="anot her Exanpl eBean"/ >
<constructor-arg ref="yet Anot her Bean"/ >
<constructor-arg val ue="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

/1 a private constructor
private Exanpl eBean(...) {

i

I/l a static factory method; the arguments to this nmethod can be
/1 considered the dependencies of the bean that is returned
/'l regardl ess of how those argunments are actually used
public static Exanpl eBean createl nstance (
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
Exanpl eBean eb = new Exanpl eBean (...);
// some other operations

return eb;

Note that arguments to the st ati ¢ factory method are supplied via constructor-arg elements, exactly the
same as if a constructor had actually been used. Also, it is important to realize that the type of the class being
returned by the factory method does not have to be of the same type as the class which contains the st ati ¢
factory method, athough in this example it is. An instance (non-static) factory method would be used in an
essentially identical fashion (aside from the use of the f act or y- bean attribute instead of the cl ass attribute), so
details will not be discussed here.

3.3.2. Constructor Argument Resolution

Constructor argument resolution matching occurs using the argument's type. If there is no potential for
ambiguity in the constructor arguments of a bean definition, then the order in which the constructor arguments
are defined in a bean definition is the order in which those arguments will be supplied to the appropriate
constructor when it is being instantiated. Consider the following class...

package Xx.y;

public class Foo {

Spring Framework (2.0) 40

The 1oC container

publ i c Foo(Bar bar, Baz baz) {
...
}

There is no potential for ambiguity here (assuming of course that Bar and Baz classes are not related in an
inheritance hierarchy). Thus the following configuration will work just fine, and you do not need to specify the
constructor argument indexes and / or types explicitly... it just plain works as you would expect it to.

<beans>
<bean name="foo" class="x.y.Foo">
<constructor - ar g>
<bean cl ass="x.y.Bar"/>
</ constructor-arg>
<const ructor - ar g>
<bean cl ass="x.y.Baz"/>
</ constructor-arg>
</ bean>
</ beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with the
preceding example). When a simple type is used, such as <val ue>t r ue<val ue>, Spring cannot determine the
type of the value, and so cannot match by type without help. Consider the following class, which is used for the
following two sections:

package exanpl es;

public class Exanpl eBean {

/1l No. of years to the calculate the Utinate Answer
private int years;

/1 The Answer to Life, the Universe, and Everything
private String ultinmateAnswer;

publ i c Exanpl eBean(int years, String ultimteAnswer) {
this.years = years
this.ultimteAnswer = ultinateAnswer;

3.3.2.1. Constructor Argument Type Matching

The above scenario can use type matching with simple types by explicitly specifying the type of the constructor
argument using the' type' attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int" val ue="7500000"/>
<constructor-arg type="java.lang. String" val ue="42"/>
</ bean>

3.3.2.2. Constructor Argument Index

Constructor arguments can have their index specified explicitly by use of thei ndex attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg index="0" val ue="7500000"/>
<constructor-arg i ndex="1" val ue="42"/>

</ bean>

As well as solving the ambiguity problem of multiple simple values, specifying an index also solves the

Spring Framework (2.0) 41

The 1oC container

problem of ambiguity where a constructor may have two arguments of the same type. Note that the index is 0
based.

5 Tip

e

Specifying a constructor argument index is the preferred way of performing constructor 10C.

3.3.3. Bean properties and constructor arguments detailed

As mentioned in the previous section, bean properties and constructor arguments can be defined as either
references to other managed beans (collaborators), or values defined inline. Spring's XML -based configuration
metadata supports a number of sub-element types within its <property/> and <const ruct or - ar g/ > €lements
for just this purpose.

3.3.3.1. Straight values (primitives, stri ngs, etc.)

The <val ue/ > element specifies a property or constructor argument as a human-readable string representation.
As mentioned in detail previously, JavaBeans Propert yEdi t or s are used to convert these string values from a
java.lang. String to the actual property or argument type.

<bean i d="nyDat aSour ce" destroy-nmethod="cl ose"
cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" >
<I-- results in a setDriverCassNane(String) call -->
<property nanme="driverd assNane" >
<val ue>com nysql . j dbc. Dri ver </ val ue>
</ property>
<property name="url">
<val ue>j dbc: nysql : / /1 ocal host : 3306/ nydb</ val ue>
</ property>
<property name="user name">
<val ue>r oot </ val ue>
</ property>
</ bean>

3.3.3.1.1. The i dref element

The idref element is simply an error-proof way to pass the id of another bean in the container (to a
<constructor-arg/ > O0Or <property/> element).

<bean i d="t heTar get Bean" class="..."/>

<bean id="theC ientBean" class="...">
<property name="tar get Nane">
<i dref bean="theTar get Bean" />
</ property>
</ bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean i d="t heTar get Bean" class="..."/>

<bean id="client" class="...">
<property nanme="t ar get Nane">
<val ue>t heTar get Bean</ val ue>
</ property>
</ bean>

The main reason the first form is preferable to the second is that using the i dref tag allows the container to

Spring Framework (2.0) 42

The 1oC container

validate at deployment time that the referenced, named bean actually exists. In the second variation, no
validation is performed on the value that is passed to the ' t ar get Nane' property of the ' client' bean. Any
typo will only be discovered (with most likely fatal results) when the* cli ent* bean is actually instantiated. If
the ' client' bean is a prototype bean, this typo (and the resulting exception) may only be discovered long
after the container is actually deployed.

Additionaly, if the bean being referred to is in the same XML unit, and the bean name is the bean id, the
"l ocal ' attribute may be used, which allows the XML parser itself to validate the bean id even earlier, at XML
document parsetime.

<property name="t ar get Nane">
<l-- a bean with an id of 'theTargetBean' nust exist, else an XML exception will be thrown -->
<idref |ocal ="theTar get Bean"/ >

</ property>

By way of an example, one common place (at least in pre-Spring 2.0 configuration) where the <idref/> element
brings value is in the configuration of AOP interceptors in a ProxyFact or yBean bean definition. If you use
<idref/> elements when specifying the interceptor names, there is no chance of inadvertently misspelling an
interceptor id.

3.3.3.2. References to other beans (collaborators)

Theref element isthe final element allowed inside a <const ruct or - ar g/ > Or <pr opert y/ > definition element.
It is used to set the value of the specified property to be areference to another bean managed by the container (a
collaborator). As mentioned in a previous section, the referred-to bean is considered to be a dependency of the
bean who's property is being set, and will be initialized on demand as needed (if it is a singleton bean it may
have already been initialized by the container) before the property is set. All references are ultimately just a
reference to another object, but there are 3 variations on how the id/name of the other object may be specified,
which determines how scoping and validation is handled.

Specifying the target bean by using the bean attribute of the <r ef / > tag is the most general form, and will allow
creating a reference to any bean in the same container (whether or not in the same XML file), or parent
container. The value of the ' bean' attribute may be the same as either the ' i d' attribute of the target bean, or
one of thevaluesin the' nanme' attribute of the target bean.

<ref bean="soneBean"/>

Specifying the target bean by using the | ocal attribute leverages the ability of the XML parser to validate XML
id references within the same file. The value of the | ocal attribute must be the same as the i d attribute of the
target bean. The XML parser will issue an error if no matching element is found in the samefile. As such, using
the local variant is the best choice (in order to know about errors are early as possible) if the target bean isin
the same XML file.

<ref |ocal ="soneBean"/>

Specifying the target bean by using the* par ent* attribute allows a reference to be created to a bean which isin
a parent container of the current container. The value of the ' parent* attribute may be the same as either the
"id attribute of the target bean, or one of the values in the ' name' attribute of the target bean, and the target
bean must be in a parent container to the current one. The main use of this bean reference variant is when you
have a hierarchy of containers and you want to wrap an existing bean in a parent container with some sort of
proxy which will have the same name as the parent bean (i.e. the bean definition in the child context is
overriding the parent bean).

<I-- in the parent context -->
<bean i d="account Servi ce" cl ass="com foo. Si npl eAccount Servi ce">

Spring Framework (2.0) 43

The 1oC container

<!-- insert dependencies as required as here -->
</ bean>

<l-- in the child (descendant) context -->

<bean id="account Service" <-- notice that the nanme of this bean is the sane as the nane of the 'parent’

cl ass="org. spri ngf ramewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property nanme="target">
<ref parent="accountService"/> <-- notice how we refer to the parent bean
</ property>
<l-- insert other configuration and dependenci es as required as here -->
</ bean>

(In @l honesty the usage of the' parent' attributeis not at all common.)

3.3.3.3. Inner beans

A <bean/ > element inside the <property/> or <constructor-arg/> elements is used to define a so-called
inner bean. An inner bean definition does not need to have any id or name defined, and it is best not to even
specify any id or name value because said id or name value will simply be ignored by the container.

Find below an example of an inner bean.

<bean id="outer" class="...">
<I-- instead of using a reference to a target bean, sinply define the target inline -->
<property name="target">
<bean cl ass="com nyconpany. Person"> <!-- this is the inner bean -->

<property nanme="nanme" val ue="Fi ona Apple"/>
<property nanme="age" val ue="25"/>
</ bean>
</ property>
</ bean>

Note that in the specific case of inner beans, the ' singleton' flag and any 'id" or ' nane' attribute are
effectively ignored. Inner beans are always anonymous and they are always scoped as prototypes. Please also
note that it is not possible to inject inner beans into collaborating beans other than into the enclosing bean.

3.3.3.4. Collections

The<list/>, <set/>, <map/ >, and <pr ops/ > elements allow properties and arguments of the Java Col | ecti on
typeLi st, Set, Map, and Properti es, respectively, to be defined and set.

<bean i d="nor eConpl exCbj ect” cl ass="exanpl e. Conpl exOhj ect ">

<l-- results in a set Adm nEmai |l s(java.util.Properties) call -->
<property nanme="adm nEnail s">
<pr ops>

<prop key="adm ni strator">adm ni strator @oneconpany. or g</ pr op>
<prop key="support">support @oneconpany. or g</ pr op>
<prop key="devel opnent " >devel opnent @oneconpany. or g</ pr op>

</ props>
</ property>
<l-- results in a setSoneList(java.util.List) call -->
<property name="soneList">

<list>

<value>a list elenent followed by a reference</val ue>
<ref bean="nyDat aSource" />
</list>
</ property>
<l-- results in a setSoneMap(java.util.mvap) call -->
<property name="soneMap">
<map>
<entry>
<key>
<val ue>yup an entry</val ue>
</ key>
<val ue>j ust some string</val ue>
</entry>

Spring Framework (2.0) 44

bean

The 1oC container

<entry>
<key>
<val ue>yup a ref</val ue>
</ key>
<ref bean="nyDat aSource" />
</entry>
</ map>
</ property>
<l-- results in a setSoneSet (java.util.Set) call -->
<property name="soneSet">
<set >
<val ue>j ust some string</val ue>
<ref bean="nyDat aSource" />
</ set>
</ property>
</ bean>

Note that the value of a map key or value, or a set value, can also again be any of the following elements:

bean | ref | idref | list | set | map | props | value | nul

3.3.3.4.1. Collection merging

As of Spring 2.0, the container also supports the merging of collections. This allows an application developer to
define a parent-style <li st/ >, <map/ >, <set/> oOr <props/ > element, and have child-style <l i st/ >, <map/ >,
<set/> Or <props/ > elements inherit and override values from the parent collection; i.e. the child collection's
values will be the result abtained from the merging of the elements of the parent and child collections, with the
child's collection elements overriding values specified in the parent collection.

Please note that this section on merging makes use of the parent-child bean mechanism. This concept has not
yet been introduced, so readers unfamiliar with the concept of parent and child bean definitions may wish to
read the corresponding section before continuing (see the section entitled Section 3.6, “Bean definition
inheritance”).

An example would perhaps serve best to illustrate this feature:

<beans>
<bean i d="parent" abstract="true" cl ass="exanpl e. Conpl ex(Chj ect">
<property nanme="adm nEnmil s">
<pr ops>
<prop key="adm ni strator">adm ni strat or @oneconpany. conx/ pr op>
<prop key="support">support @oneconpany. conx/ pr op>
</ props>
</ property>
</ bean>
<bean i d="child" parent="parent">
<property name="adm nEnail s">
<l-- the nerge is specified on the *child* collection definition -->
<props nerge="true">
<prop key="sal es">sal es@oneconpany. conk/ prop>
<prop key="support">support @oneconpany. co. uk</ prop>
</ props>
</ property>
</ bean>
<beans>

Notice the use of the mer ge=t r ue attribute on the <pr ops/ > element of the adni nEnai | s property of thechild
bean definition. When the chi | d bean is actualy resolved and instantiated by the container, the resulting
instance will have an adni nEmi | s Properti es collection that contains the result of the merging of the child's
adni nEmai | s collection with the parent's adni nEmai | s collection.

adm ni st rat or =adm ni strat or @oneconpany. com
sal es=sal es@oneconpany. com
support =suppor t @oneconpany. co. uk

Spring Framework (2.0) 45

The 1oC container

Notice how the child Properti es collection's value set will have inherited all the property elements from the
parent <pr ops/ >. Notice also how the child's value for the support value overrides the attendant value in the
parent collection.

This merging behavior applies similarly to the <li st/ >, <map/ >, and <set /> collection types. In the specific
case of the <list/> element, the semantics associated with the Li st collection type, i.e. the notion of an
or der ed collection of values, is maintained; the parent's values will precede al of the child list's values. In the
case of the map, Set, and Properties collection types, there is no notion of ordering and hence no ordering
semantics are in effect for the collection types that underlie the associated Map, Set and Properties
implementation types used internally by the container.

Finally, some minor notes about the merging support are in order; you cannot merge different collection types
(e.g. amap and aLi st), and if you do attempt to do so an appropriate Except i on Will be thrown; and in case it
is not immediately obvious, the ' merge' attribute must be specified on the lower level, inherited, child
definition; specifying the ' mer ge' attribute on a parent collection definition is redundant and will not result in
the desired merging; and (lastly), please note that this merging feature is only available in Spring 2.0 (and later
versions).

3.3.3.4.2. Strongly-typed collection (Java5+ only)

If you are one of the lucky few to be using Javab (Tiger), you will be aware that it is possible (and | daresay
recommended) to have strongly typed collections. That is, it is possible to declare a Col | ect i on type such that
it can only contain st ri ng elements (for example).

If you are using Spring to dependency inject a strongly-typed Col | ect i on into a bean, you can take advantage
of Spring's type-conversion support such that the elements of your strongly-typed Col | ect i on instances will be
converted to the appropriate type prior to being added to the Col | ect i on.

An example will make this clear; consider the following class definition, and it's attendant (XML)
configuration...

public class Foo {
private Map<String, Float> accounts

public void setAccounts(Mp<String, Float> accounts) {
this.accounts = accounts;

}

<beans>
<bean i d="fo0" class="x.y.Foo">
<property name="accounts">
<n"ﬂp>
<entry key="one" val ue="9.99"/>
<entry key="two" val ue="2.75"/>
<entry key="six" val ue="3.99"/>
</ map>
</ property>
</ bean>
</ beans>

When the ' accounts' property of the ' foo' bean is being prepared for injection, the generics information
about the element type of the strongly-typed mMap<String, Float> is actualy available via reflection, and so
Spring's type conversion infrastructure will actually recognize the various value elements as being of type
Fl oat and sothe string values' 9.99', *2.75',and' 3. 99" will be converted into an actual Fl oat type.

Spring Framework (2.0) 46

The 1oC container

3.3.3.5. NulI s

The <nul I / > element is used to handle nul I values. Spring treats empty arguments for properties and the like
as empty strings. The following XML-based configuration metadata snippet results in the email property
being set to the empty stri ng value (")

<bean cl ass="Exanpl eBean" >
<property name="emai | " ><val ue></val ue></ property>
</ bean>

Thisis equivalent to the following Java code: exanpl eBean. set Emai | (") . The special <nul | > element may be
used to indicate anul | value. For example:

<bean cl ass="Exanpl eBean" >
<property nanme="email " ><nul | / ></ property>
</ bean>

The above configuration is equivalent to the following Java code: exanpl eBean. set Emai | (nul 1) .

3.3.3.6. XML-based configuration metadata shortcuts

It is so common to need to configure avalue or a bean reference, that there exist some shortcut forms which are
less verbose than using the full <val ue/ > and <r ef / > elements. The <property/ >, <constructor-ar g/ >, and
<ent ry/ > elements all support a* val ue' attribute which may be used instead of embedding a full <val ue/ >
element. Therefore, the following:

<property name="mnyProperty">
<val ue>hel | o</ val ue>
</ property>

<const ruct or - ar g>
<val ue>hel | o</ val ue>
</ constructor-arg>

<entry key="nyKey">
<val ue>hel | o</ val ue>
</entry>

are equivaent to:

<property name="nyProperty" val ue="hello"/>

<constructor-arg val ue="hell 0"/ >

<entry key="nyKey" val ue="hell0o"/>

In general, when typing definitions by hand, you will probably prefer to use the less verbose shortcut form (the
Spring team certainly does).

The <property/ > and <const ruct or - ar g/ > elements support a similar shortcut ' ref' attribute which may be
used instead of afull nested <r ef / > element. Therefore, the following:

<property name="nyProperty">
<ref bean="nyBean">
</ property>

Spring Framework (2.0) a7

The 1oC container

<constructor - ar g>
<ref bean="nyBean">
</ constructor-arg>

are equivalent to:

<property name="nyProperty" ref="nyBean"/>
<constructor-arg ref="nyBean"/>

Note however that the shortcut form is equivalent to a<ref bean="xxx"> element; there is no shortcut for <r ef
I ocal ="xxx">. To enforce a strict local reference, you must use the long form.

Finally, the entry element allows a shortcut form to specify the key and/or value of the map, in the form of the
"key' /' key-ref' and'val ue' /' val ue-ref' attributes. Therefore, the following:

<entry>

<key>
<ref bean="nyKeyBean" />

</ key>
<ref bean="nyVal ueBean" />

</entry>

isequivaent to:

<entry key-ref="nyKeyBean" val ue-ref ="nyVal ueBean"/ >

Again, the shortcut form is equivalent to a <ref bean="xxx"> element; there is no shortcut for <ref
| ocal ="xxx">.

3.3.3.7. Compound property names

Compound or nested property names are perfectly legal when setting bean properties, as long as all components
of the path except the final property name are non-null. For example, in this bean definition:

<bean id="foo" class="foo.Bar">
<property nanme="fred. bob. satmy" val ue="123" />
</ bean>

The f oo bean has afred property which has a bob property, which has a sammy property, and that final samy
property is being set to a scalar value of 123. In order for this to work, the fred property of f oo, and the bob
property of fred must both be non-null after the bean is constructed, or a Nul | Poi nt er Excepti on will be
thrown.

3.3.4. Using depends- on

For most situations, the fact that a bean is a dependency of another is expressed simply by the fact that one bean
is set as a property of another. This is typically accomplished with the <ref/> element in XML-based
configuration metadata. In avariation of this, sometimes a bean which is aware of the container is simply given
the id of its dependency (using a string value or aternately the <i dr ef / > element, which evaluates the same as
a string value). The first bean then programmatically asks the container for its dependency. In either case, the
dependency is properly initialized before the dependent bean.

Spring Framework (2.0) 48

The 1oC container

For the relatively infrequent situations where dependencies between beans are less direct (for example, when a
static initializer in a class needs to be triggered, such as database driver registration), the ' depends- on'
attribute may be used to explicitly force one or more beans to be initialized before the bean using this element
isinitialized. Find below an example of using the ' depends-on' attribute to express a dependency on a single
bean.

<bean i d="beanOne" cl ass="Exanpl eBean" depends- on="manager"/>

<bean i d="manager" cl ass="Manager Bean" />

If you need to express a dependency on multiple beans, you can supply a delimited list of bean names as the
value of the' depends-on' attribute, with commas, whitespace and semi-colons all valid delimiters. Find below
an example of using ' depends- on' to express a dependency on a number of beans.

<bean i d="beanOne" cl ass="Exanpl eBean" depends- on="nmanager, account Dao" >
<property name="manager" ref="manager" />
</ bean>

<bean i d="manager" cl ass="ManagerBean" />
<bean i d="account Dao" cl ass="x.y.j dbc.JdbcAccount Dao" />

3.3.5. Lazily-instantiating beans

The default behavior for ApplicationContext implementations is to eagerly pre-instantiate all singl et on
beans at startup. Pre-instantiation means that an Appl i cati onCont ext implementation instance will eagerly
create and configure all of it's singleton beans as part of itsinitialization process. Thisis generally a good thing,
because it means that any errors in the configuration or in the attendant environment will be discovered
immediately (as opposed to possibly hours or even days down the ling).

However, there are times when this behavior is not what is wanted. If you do not want a singleton bean to be
pre-instantiated when using an Appl i cationContext implementation, you can (on a bean-definition by
bean-definition basis) selectively control this by marking a bean definition as lazy-initialized. A
lazily-initialized bean indicates to the 10C container whether or not a bean instance should be created at startup
or when it isfirst requested.

When configuring beans via XML, this lazy loading is controlled by the' | azy-init* attribute on the <bean/ >
element; for example:

<bean id="lazy" class="com foo0. Expensi veToCr eat eBean" |azy-init="true">
<!-- various properties here... -->
</ bean>

<bean name="not .| azy" cl ass="com f o0o. Anot her Bean" >
<!-- various properties here... -->
</ bean>

When the above configuration is consumed by an ApplicationContext implementation, the bean named
"lazy' will not be eagerly pre-instantiated when the ApplicationContext is starting up, whereas the
"not. |l azy' bean will be eagerly pre-instantiated.

One thing to understand about lazy-initialization is that even though a bean definition may be marked up as
being lazy-initialized, if the lazy-initiadized bean is the dependency of a singleton bean that is not
lazy-initialized, when the Appl i cati onContext iS eagerly pre-instantiating the singleton, it will (of course)
have to satisfy all of said singletons dependencies, one of which will be the lazy-initialized bean! So don't be
confused if the 10C container creates one of the beans that you have explicitly configured as lazy-initialized at
startup; al that means is that the lazy-initialized bean probably is being injected into a non-lazy-initialized

Spring Framework (2.0) 49

The 1oC container

singleton bean elsewhere in your configuration.

It is also possible to control lazy-initialization at the container level by using the ' defaul t-1azy-init"
attribute on the <beans/ > element; for example:

<beans default-lazy-init="true">
<l-- no beans will be eagerly pre-instantiated... -->
</ beans>

3.3.6. Autowiring collaborators

A Spring |oC container is able to autowire relationships between collaborating beans. This means that it is
possible to automatically let Spring resolve collaborators (other beans) for your bean by inspecting the contents
of the BeanFact ory. The autowiring functionality has five modes. Autowiring is specified per bean and can
thus be enabled for some beans, while other beans won't be autowired. Using autowiring, it is possible to
reduce or eliminate the need to specify properties or constructor arguments, saving a significant amount of
typing. 2 When usi ng XML-based configuration metadata, the autowire mode for a bean definition is specified
by using the aut owi r e attribute of the <bean/ > element. The following values are allowed:

Table 3.2. Autowiring modes

M ode

no

byName

byType

constructor

autodetect

Explanation

No autowiring at all. Bean references must be defined via a ref element. This is the
default, and changing this is discouraged for larger deployments, since explicitly
specifying collaborators gives greater control and clarity. To some extent, it is a form of
documentation about the structure of a system.

Autowiring by property name. This option will inspect the container and look for a bean
named exactly the same as the property which needs to be autowired. For example, if you
have a bean definition which is set to autowire by name, and it contains a master property
(that is, it has a setMaster(..) method), Spring will look for a bean definition named
mast er , and use it to set the property.

Allows a property to be autowired if there is exactly one bean of the property type in the
container. If there is more than one, afatal exception is thrown, and this indicates that you
may not use byType autowiring for that bean. If there are no matching beans, nothing
happens;, the property is not set. If this is not desirable setting the
dependency- check="obj ect s" attribute value specifies that an error should be thrown in
this case.

Thisis analogous to byType, but applies to constructor arguments. If there isn't exactly one
bean of the constructor argument type in the container, afatal error is raised.

Chooses constructor or byType through introspection of the bean class. If a default
constructor isfound, the byType mode will be applied.

Note that explicit dependenciesin property and construct or - ar g Settings al ways override autowiring. Please
also note that it is not currently possible to autowire so-called simple properties such as primitives, stri ngs,

2See the section entitled Section 3.3.1, Injecting dependencies”

Spring Framework (2.0) 50

The 1oC container

and d asses (and arrays of such simple properties).(This is by-design and should be considered a feature.)
Autowire behavior can be combined with dependency checking, which will be performed after all autowiring
has been completed.

It is important to understand the various advantages and disadvantages of autowiring. Some advantages of
autowiring include:

» Autowiring can significantly reduce the volume of configuration required. However, mechanisms such as the
use of abean template (discussed elsewhere in this chapter) are also valuable in this regard.

< Autowiring can cause configuration to keep itself up to date as your objects evolve. For example, if you need
to add an additional dependency to a class, that dependency can be satisfied automatically without the need
to modify configuration. Thus there may be a strong case for autowiring during development, without ruling
out the option of switching to explicit wiring when the code base becomes more stable.

Some disadvantages of autowiring:

» Autowiring is more magical than explicit wiring. Although, as noted in the above table, Spring is careful to
avoid guessing in case of ambiguity which might have unexpected results, the relationships between your
Spring-managed objectsis no longer explicitly documented.

» Wiring information may not be available to tools that may generate documentation from a Spring container.

» Autowiring by type will only work when there is a single bean definition of the type specified by the setter
method or constructor argument. Y ou need to use explicit wiring if thereis any potential ambiguity.

Thereis no "wrong" or "right" answer in all cases. A degree of consistency across a project is best though; for
example, if autowiring is not used in general, it might be confusing to developers to use it just to wire one or
two bean definitions.

3.3.6.1. Excluding a bean from being available for autowiring

You can also (on a per bean basis) totally exclude a bean from being an autowire candidate. When configuring
beans using Spring's XML format, the * aut owi r e- candi dat e’ attribute of the <bean/ > element can be set to
"fal se'; this has the effect of making the container totally exclude that specific bean definition from being
available to the autowiring infrastructure.

This can be useful when you have a bean that you absolutely never ever want to have injected into other beans
via autowiring. It does not mean that the excluded bean cannot itself be configured using autowiring... it can, it
israther that it itself will not be considered as a candidate for autowiring other beans.

3.3.7. Checking for dependencies

The Spring 10C container also has the ability to try to check for the existence of unresolved dependencies of a
bean deployed into the container. These are JavaBeans properties of the bean, which do not have actual values
set for them in the bean definition, or alternately provided automatically by the autowiring feature.

This feature is sometimes useful when you want to ensure that all properties (or al properties of a certain type)
are set on a bean. Of course, in many cases a bean class will have default values for many properties, or some
properties do not apply to all usage scenarios, so this feature is of limited use. Dependency checking can also
be enabled and disabled per bean, just as with the autowiring functionality. The default is to not check
dependencies. Dependency checking can be handled in severa different modes. When using XML-based
configuration metadata, this is specified viathe ' dependency- check' attribute in a bean definition, which may

Spring Framework (2.0) 51

The 1oC container

have the following values.

Table 3.3. Dependency checking modes

Mode Explanation

none
No dependency checking. Properties of the bean which have no value specified for them

are simply not set.

simple
Dependency checking is performed for primitive types and collections (everything except
collaborators, i.e. other beans)

object
Dependency checking is performed for collaborators only

al

Dependency checking is done for collaborators, primitive types and collections

If you are using Java 5 (Tiger) and thus have access to source level annotations, you may find the section
entitled Section 25.3.1, “ @Requi r ed” to be of interest.

3.3.8. Method Injection

For most application scenarios, the mgority of the beans in the container will be singletons. When a singleton
bean needs to collaborate with (use) another singleton bean, or a non-singleton bean needs to collaborate with
another non-singleton bean, the typical and common approach of handling this dependency by defining one
bean to be a property of the other, is quite adequate. There is however a problem when the bean lifecycles are
different. Consider a singleton bean A which needs to use a non-singleton (prototype) bean B, perhaps on each
method invocation on A. The container will only create the singleton bean A once, and thus only get the
opportunity to set its properties once. There is no opportunity for the container to provide bean A with a new
instance of bean B every time one is needed.

One solution to thisissue is to forgo some inversion of control. Bean A can be made aware of the container by
implementing the BeanFact oryAwar e interface, and use programmatic means to ask the container via a
getBean("B") cal for (a typicaly new) bean B instance every time it needs it. Find below an admittedly
somewhat contrived example of this approach:

/'l a class that uses a stateful Command-style class to perform some processing
package fiona. appl e;

/'l lots of Spring-APlI inports

i mport org. springframewor k. beans. BeansExcepti on;

i mport org.springframework. beans. fact ory. BeanFact ory;

i nport org. springfranework. beans. f act ory. BeanFact or yAwar e;

public class ConmandManager i npl ements BeanFact oryAware {
private BeanFactory beanFactory;

public Object process(Map commandState) {
/1 grab a new instance of the appropriate Command
Command conmmand = creat eCommand() ;
/'l set the state on the (hopefully brand new) Conmand i nstance
command. set St at e(commandSt at e) ;
return conmmand. execute();
}

/! the command returned here could be an inplenentation that executes asynchronously, or whatever
protected Command creat eCommand() {
return (Comand) this. beanFactory. get Bean("conmand"); // notice the Spring APl dependency

Spring Framework (2.0) 52

The 1oC container

}

public void setBeanFactory(BeanFactory beanFactory) throws BeansException {
t hi s. beanFactory = beanFactory;

}
}

The above example is generally is not a desirable solution since the business code is then aware of and coupled
to the Spring Framework. Method Injection, a somewhat advanced feature of the Spring 10C container, allows
this use case to be handled in a clean fashion.

3.3.8.1. Lookup method injection

Isn't this Method Injection...

.. somewhat like Tapestry 4.0's pages, where folks wrote abstract properties that Tapestry would
override at runtime with implementations that did stuff? It sure is (well, kinda).

Y ou can read more about the motivation for Method Injection in this blog entry.

Lookup method injection refersto the ability of the container to override methods on container managed beans,
to return the result of looking up another named bean in the container. The lookup will typicaly be of a
prototype bean as in the scenario described above (although it can also be a singleton of course - but in that
case injecting the instance straight into the object would suffice). The Spring Framework implements this
method injection by dynamically generating a subclass overriding the method, using bytecode generation via
the CGLIB library.

So if you look at the code from previous code snippet (the ConmandManager class), the Spring container is going
to dynamically override the implementation of the creat eConmand() method. Your CommandManager class is
not going to have any Spring dependencies, as can be seen in this reworked example below:

package fiona. appl e;
/1 no nmore Spring inports!
public class ConmandManager {

public Object process(Object conmand) {
/] grab a new instance of the appropriate comand interface
Command conmmand = creat eCommand() ;
/'l set the state on the (hopefully brand new) Conmand instance
command. set St at e(commandSt at e) ;
return conmmand. execute();

}

/1 mmm but where is the inplementati on of this method?
protected abstract ConmandHel per createHel per();

In the client class containing the method to be injected (the CommandManager in this case), the method that is to
be 'injected’ must have a signature of the following form:

<public| protected> [abstract] <return-type> theMet hodNane(no-argunents);
If the method is abstract, the dynamically-generated subclass will implement the method. Otherwise, the

dynamically-generated subclass will override the concrete method defined in the original class. Let's look at an
example:

Spring Framework (2.0) 53

http://blog.springframework.com/rod/?p=1

The 1oC container

<l-- a stateful bean depl oyed as a prototype (non-singleton) -->

<bean i d="command" cl ass="fi ona. appl e. AsyncConmand" scope="pr ot ot ype">
<I'-- inject dependencies here as required -->

</ bean>

<l'-- conmandProcessor USEeS stateful CommandHel per -->

<bean i d="conmmandManager" cl ass="fi ona. appl e. CoomandManager " >
<l ookup- met hod nane="creat eCommand" bean="comand"/>
</ bean>

The bean identified as commandManager will call its own method cr eat eCormand Whenever it needs a new
instance of the command bean. It is important to note that the person deploying the beans must be careful to
deploy the command bean as a prototype (if that is actually what is needed). If it is deployed as a singleton
(either explicitly, or relying on the default true setting for this flag), the same instance of the conmand bean will
be returned each time!

Note that lookup method injection can be combined with both Constructor and Setter I njection.

Please be aware that in order for this dynamic subclassing to work, you will need to have the CGLIB jar(s) on
your classpath. Additionally, the class that the Spring container is going to subclass cannot be fi nal , and the
method that is being overridden cannot be fi nal either. Also, testing a class that has an abst r act method can
be somewhat odd in that you will have to subclass the class yourself and supply a stub implementation of the
abst ract method. Finally, beans that have been the target of method injection cannot be serialized.

Tip
"

The interested reader may aso find the ServicelocatorFactoryBean (in the
org. spri ngfranmewor k. beans. fact ory. confi g package) to be of use... the approach is similar to
that of the bj ect Fact or yCr eat i ngFact or yBean, but it allows you to specify your own lookup
interface as opposed to having to use a Spring-specific lookup interface such as the
Qbj ect Fact ory. Consult the (copious) Javadocs for the Servi celLocat or Fact or yBean for a full
treatment of this alternative approach (that does reduce the coupling to Spring).

3.3.8.2. Arbitrary method replacement

A less commonly useful form of method injection than Lookup Method Injection is the ability to replace
arbitrary methods in a managed bean with another method implementation. Users may safely skip the rest of
this section (which describes this somewhat advanced feature), until this functionality is actually needed.

When using XML-based configuration metadata, the r epl aced- net hod element may be used to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with a method
computeV alue, which we want to override:

public class MyVal ueCal cul ator {
public String conputeValue(String input) {

/1 some real code...

}

/! sone other nethods...

A classimplementing the or g. spri ngf r anewor k. beans. f act ory. support. Met hodRepl acer interface provides
the new method definition.

/** meant to be used to override the existing conputeVal ue
i npl enent ation in MVal ueCal cul ator */

Spring Framework (2.0) 54

The 1oC container

public class Repl acenent Conput eVal ue i npl enents Met hodRepl acer {

public oject reinplement(oject o, Method m oject[] args) throws Throwabl e {
/'l get the input value, work with it, and return a conputed result
String input = (String) args[0];

return ...;

The bean definition to deploy the original class and specify the method override would look like this:

<bean i d="nyVal ueCal cul at or class="x.y.z. MyVal ueCal cul at or" >
<l-- arbitrary nethod repl acenent -->
<repl aced- net hod nanme="conput eVal ue" repl acer ="r epl acenent Conput eVal ue" >
<arg-type>String</arg-type>
</ repl aced- net hod>
</ bean>

<bean i d="repl acenent Conput eVal ue" cl ass="a. b. c. Repl acenent Conput eVal ue"/ >

One or more contained <ar g- t ype/ > elements within the <r epl aced- met hod/ > element may be used to indicate
the method signature of the method being overridden. Note that the signature for the arguments is actually only
needed in the case that the method is actually overloaded and there are multiple variants within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name. For example,
all the following would match j ava. | ang. Stri ng.

java.lang. String
String
Str

Since the number of arguments is often enough to distinguish between each possible choice, this shortcut can
save alot of typing, by allowing you to type just the shortest string that will match an argument type.

3.4. Bean scopes

When you create a bean definition (typically in an XML configuration file) what you are actually creating is
(loosely speaking) a recipe or template for creating actual instances of the objects defined by that bean
definition. The fact that a bean definition is a recipe is important, because it means that, just like a class, you
can potentialy have many object instances created from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into an
object that is created from a particular bean definition, but also the scope of the objects created from a
particular bean definition. This approach is very powerful and gives you the flexibility to choose the scope of
the objects you create through configuration instead of having to 'bake in' the scope of an object at the Java
class level. Beans can be defined to be deployed in one of a number of scopes: out of the box, the Spring
Framework supports exactly five scopes (of which three are available only if you are using a web-aware Spring
Appl i cati onCont ext).

The scopes supported out of the box are listed below:

Table 3.4. Bean scopes

Scope Description

singleton Scopes a single bean definition to a single object
instance per Spring 10C container.

Spring Framework (2.0) 55

The 1oC container

Scope Description

prototype Scopes a single bean definition to any number of
object instances.

request Scopes a single bean definition to the lifecycle of a
single HTTP request; i.e. each and every HTTP
request will have its own instance of a bean created
off the back of a single bean definition. Only valid in
the context of a web-aware Spring
Appl i cati onCont ext .

session Scopes a single bean definition to the lifecycle of a
HTTP session. Only valid in the context of a
web-aware Spring Appl i cat i onCont ext .

global session Scopes a single bean definition to the lifecycle of a
globa HTTP session. Typicadly only valid when
used in a portlet context. Only valid in the context of
aweb-aware Spring Appl i cat i onCont ext .

3.4.1. The singleton scope

When a bean is a singleton, only one shared instance of the bean will be managed and all requests for beans
with an id or ids matching that bean definition will result in that one specific bean instance being returned by
the Spring container.

To put it another way, when you define a bean definition and it is scoped as a singleton, then the Spring 10C
container will create exactly one instance of the object defined by that bean definition (or recipe). This single
instance will be stored in a singleton cache, and all subsequent requests and references for that named bean
will result in the cached object instance being returned.

The following diagram illustrates the Spring singleton scope.

Spring Framework (2.0) 56

The 1oC container

Only one instance is ever created...

<bean id="accountbDae" class="..." />

... and this same shared instance is injected into each collaborating object

Please be aware that Spring's concept of a singleton bean is quite different from the Singleton pattern as defined
in the seminal Gang of Four (GoF) patterns book. The classic GoF Singleton hardcodes the scope of an object
such that one and only one instance of a particular class will ever be created per d assLoader . The scope of the
Spring singleton is best described as per cont ai ner and per bean. This means that if you define one bean for a
particular class in a single Spring container, then the Spring container will create one and only one instance of
the class defined by that bean definition.

The singleton scope is the default scope in Spring. To define a bean as a singleton in XML, you would write
configuration like so:
<bean i d="account Servi ce" cl ass="com foo. Def aul t Account Servi ce"/ >

<l-- the followi ng is equival ent, though redundant (singleton scope is the default) -->
<bean i d="account Servi ce" cl ass="com fo0o0. Def aul t Account Servi ce" scope="si ngl eton"/>

<l-- the followi ng is equival ent, though redundant (and preserved for backward conpatibility) -->
<bean i d="account Servi ce" cl ass="com foo. Def aul t Account Servi ce" singleton="true"/>

3.4.2. The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance every
time a request for that specific bean is made (that is, it is injected into another bean or it is requested via a
programmatic get Bean() method call on the container). As arule of thumb, you should use the prototype scope
for al beansthat are stateful, while the singleton scope should be used for stateless beans.

The following diagram illustrates the Spring prototype scope. Please note that a DAO would not typically be
configured as a prototype, since a typical DAO would not hold any conversational state; it was just easier for
this author to reuse the core of the singleton diagram.

Spring Framework (2.0) 57

The 1oC container

A brand new bean instance is created...

O

<bean id="accountDao" class="..."
scope="prototype" />

... each and every time the prototype is referenced by collaborating beans

To define abean as a prototype in XML, you would write configuration like so:

<bean i d="account Servi ce" cl ass="com fo0o0. Def aul t Account Servi ce" scope="prototype"/>

<l-- the following is equivalent too (and preserved for backward conpatibility) -->
<bean i d="account Servi ce" cl ass="com foo. Def aul t Account Servi ce" singleton="fal se"/>

There is one quite important thing to be aware of when deploying a bean in the prototype scope, in that the
lifecycle of the bean changes dlightly. Spring cannot (and hence does not) manage the complete lifecycle of a
prototype bean: the container instantiates, configures, decorates and otherwise assembles a prototype object,
hands it to the client and then has no further knowledge of that prototype instance. This means that while
initialization lifecycle callback methods will be (and are) called on all objects regardless of scope, in the case of
prototypes, any configured destruction lifecycle callbacks will not be caled. It is the responsibility of the client
code to clean up prototype scoped objects and release any expensive resources that the prototype bean(s) are
holding onto. (One possible way to get the Spring container to release resources used by singleton-scoped
beans is through the use of a bean post processor which would hold a reference to the beans that need to be
cleaned up.)

In some respects, you can think of the Spring container's role when talking about a prototype-scoped bean as
somewhat of a replacement for the Java ' new operator. Any lifecycle aspects past that point have to be
handled by the client. The lifecycle of a bean in a Spring 10C container is further described in the section
entitled Section 3.5.1, “Lifecycleinterfaces’.

g \‘ Backwar ds compatibility note: specifying the lifecycle scopein XML
If you are referencing the ' spri ng- beans. dtd' DTD in abean definition file(s), and you are being
explicit about the lifecycle scope of your bean(s) you must use the "si ngl et on" attribute to express
the lifecycle scope (remembering that the singleton lifecycle scope is the default). If you are
referencing the ' spri ng-beans-2. 0. dtd* DTD or the Spring 2.0 XSD schema, then you will need
to use the "scope" attribute (because the "si ngl et on" attribute was removed from the definition of
the new DTD and XSD filesin favour of the "scope" attribute).

To be totally clear about this, this means that if you use the "si ngl et on" attribute in an XML bean
definition then you must be referencing the ' spri ng- beans. dtd' DTD in that file. If you are using
the "scope" attribute then you must be referencing either the' spri ng- beans-2. 0. dtd' DTD or the
" spring-beans-2.0.xsd" XSD inthat file.

Spring Framework (2.0) 58

The 1oC container

3.4.3. The other scopes

The other scopes, namely request, sessi on, and gl obal sessi on are for use only in web-based applications
(and can be used irrespective of which particular web application framework you are using, if indeed any). In
the interest of keeping related concepts together in one place in the reference documentation, these scopes are
described here.

Note

e
The scopes that are described in the following paragraphs are only available if you are using a
web-aware Spring Appl i cati onCont ext implementation (such as Xm WebAppl i cat i onCont ext). If
you try using these next scopes with regular Spring 10C containers such as the xn BeanFact ory or
Cl assPat hxnl Appl i cati onCont ext, you Will get an 111 egal St at eExcepti on complaining about
an unknown bean scope.

3.4.3.1. Initial web configuration

In order to effect the scoping of beans at the request, sessi on, and gl obal session level (i.e. web-scoped
beans), some minor initial configuration is required before you can set about defining your bean definitions.
Please note that this extra setup is not required if you just want to use the 'standard’ scopes; i.e. singleton and
prototype.

Now as things stand, there are a couple of ways to effect this initial setup depending on your particular servlet
environment. If you are using a Servlet 2.4+ web container, then you need only add the following
Cont ext Li st ener to the XML declarations in your web applications' web. xni * file.

<web- app>

<listener>
<l i stener-cl ass>org. springfranmewor k. web. cont ext . request . Request Cont ext Li st ener</|i st ener-cl ass>
</listener>

</ web- app>

If you are using an older web container (before Servliet 2.4), you will need to use a (provided)
javax.servlet. Filter implementation. Find below a snippet of XML configuration that has to be included in
the' web. xni * file of your web application if you want to have access to web-scoped beans (the filter settings
depend on the surrounding web application configuration and so you will have to change them as appropriate).

<web- app>

<filter>
<filter-name>requestContextFilter</filter-nanme>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-mppi ng>
<filter-name>request ContextFilter</filter-nane>
<url-pattern>/*</url-pattern>
</filter-mappi ng>

</ web- app>

That's it. The Request Cont ext Li st ener and Request Cont ext Fi | t er classes both do exactly the same thing,
namely bind the HTTP request object to the Thread that is servicing that request. This makes beans that are
reguest- and session-scoped available further down the call chain.

3.4.3.2. The request scope

Spring Framework (2.0) 59

The 1oC container

Consider the following bean definition:

<bean i d="I| ogi nAction" class="com foo0. Logi nActi on" scope="request"/>

With the above bean definition in place, the Spring container will create a brand new instance of the
Logi nActi on bean using the ' I ogi nActi on' bean definition for each and every HTTP request. That is, the
"1 ogi nActi on' bean will be effectively scoped at the HTTP request level. You can change or dirty the internal
state of the instance that is created as much as you want, safe in the knowledge that other requests that are also
using instances created off the back of the same ' | ogi nAction' bean definition will not be seeing these
changes in state since they are particular to an individual request. When the request is finished processing, the
bean that is scoped to the request will be discarded.

3.4.3.3. The session scope

Consider the following bean definition:

<bean i d="userPreferences" class="com foo. UserPreferences" scope="session"/>

With the above bean definition in place, the Spring container will create a brand new instance of the
User Pref erences bean using the ' user Preferences' bean definition for the lifetime of a single HTTP
Sessi on. In other words, the * user Pref erences' bean will be effectively scoped at the HTTP Sessi on level.
Just liker equest - scoped beans, you can change the internal state of the instance that is created as much asyou
want, safe in the knowledge that other HTTP Sessi on instances that are also using instances created off the
back of the same ' user Pref erences' bean definition will not be seeing these changes in state since they are
particular to an individual HTTP Sessi on. When the HTTP Sessi on is eventually discarded, the bean that is
scoped to that particular HTTP Sessi on will also be discarded.

3.4.3.4. The global session scope

Consider the following bean definition:

<bean i d="user Preferences" class="com foo. UserPreferences" scope="gl obal Sessi on"/>

The gl obal sessi on scopeissimilar to the standard HTTP Sessi on scope (described immediately above), and
really only makes sense in the context of portlet-based web applications. The portlet specification defines the
notion of a global sessi on that is shared amongst all of the various portlets that make up a single portlet web
application. Beans defined at the gl obal sessi on scope are scoped (or bound) to the lifetime of the global
portlet Sessi on.

Please note that if you are writing a standard Servlet-based web application and you define one or more beans
as having gl obal sessi on scope, the standard HTTP sessi on scope will be used, and no error will be raised.

3.4.3.5. Scoped beans as dependencies

Being able to define a bean scoped to a HTTP request or Sessi on (or indeed a custom scope of your own
devising) is all very well, but one of the main value-adds of the Spring 10C container is that it manages not only
the instantiation of your objects (beans), but also the wiring up of collaborators (or dependencies). If you want
to inject a bean that, for the sake of argument is scoped at the HTTP request scope, into another bean, you will
need to inject an AOP proxy in place of the scoped bean. That is to say, you need to inject a proxy object that
exposes the same public interface as the scoped object, but that is smart enough to be able to retrieve the real,
target object from the relevant scope (for example a HTTP request) and delegate method calls onto the real
object.

Spring Framework (2.0) 60

The 1oC container

Note

You do not need to use the <aop: scoped- proxy/ > in conjunction with beans that are scoped as
si ngl et ons Of prototypes. It isan error to try to create a scoped proxy for a singleton bean (and
the resulting BeanCr eat i onExcept i on Will certainly set you straight in this regard).

Let's look at the configuration that is required to effect this; the configuration is not hugely complex (it takes
just oneline), but it isimportant to understand the “why” aswell as the “how” behind it.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"
Xsi : schemalLocat i on="
http://ww. springframework. or g/ scherma/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. or g/ schema/ aop http://ww. springframewor k. or g/ schema/ aop/ spri ng-aop- 2. 0. xsd">

<I-- a HITP Session-scoped bean exposed as a proxy -->
<bean id="userPreferences" class="com foo. UserPreferences" scope="session">

<l-- this next elenent effects the proxying of the surroundi ng bean -->
<aop: scoped- pr oxy/ >

</ bean>

<l-- a singleton-scoped bean injected with a proxy to the above bean -->

<bean i d="user Servi ce" class="com foo. Si npl eUser Servi ce" >

<I-- a reference to the proxied 'userPreferences’ bean -->
<property name="user Preferences" ref="userPreferences"/>

</ bean>
</ beans>

To create a proxy to a scoped bean using XML-based configuration, you need only to insert a child
<aop: scoped- proxy/ > element into a scoped bean definition (you may also need the CGLIB library on your
classpath so that the container can effect class-based proxying; you will also need to be using XSD based
configuration). The above XML configuration demonstrated the “how”; now for the “why”. So, just why do
you need this <aop: scoped- proxy/ > element in the definition of beans scoped at the r equest, sessi on, and
gl obal Sessi on level? The reason is best explained by picking apart the following bean definition (please note
that the following ' user Pref er ences' bean definition asit standsis incomplete):

<bean i d="userPreferences" class="com foo. User Preferences" scope="session"/>

<bean i d="user Manager" cl ass="com f 0oo. User Manager " >
<property nanme="user Preferences" ref="userPreferences"/>
</ bean>

From the above configuration it is evident that the singleton bean ' user Manager' is being injected with a
reference to the HTTP Sessi on-scoped bean ' userPreferences'. The sdient point here is that the
" user Manager' bean isasingleton... it will be instantiated exactly once per container, and its dependencies (in
this case only one, the ' userPreferences’ bean) will aso only be injected once. This means that the
"user Manager' Will (conceptually) only ever operate on the exact same ' user Pref er ences' oObject, i.e. the one
that it was originally injected with. Thisis not what you want when you inject aHTTP Sessi on-scoped bean as
a dependency into a collaborating object. What we do want isa single' user Manager' object, and then, for the
lifetime of aHTTP Sessi on, we want to see and use a' user Pref erences' object that is specific to said HTTP
Sessi on.

Rather what you need then is to inject some sort of object that exposes the exact same public interface as the
User Pref erences class (ideally an object that is a User Pref er ences instance) and that is smart enough to be
able to go off and fetch the real User Pref erences object from whatever underlying scoping mechanism we

Spring Framework (2.0) 61

The 1oC container

have chosen (HTTP request, Sessi on, €tc.). We can then safely inject this proxy object into the* user Manager*
bean, which will be blissfully unaware that the User Pr ef er ences reference that it is holding onto is aproxy. In
the case of this example, when a User Manager instance invokes a method on the dependency-injected
User Pr ef er ences object, it is realy invoking a method on the proxy... the proxy will then go off and fetch the
real User Pref erences object from (in this case) the HTTP Sessi on, and delegate the method invocation onto
the retrieved real User Pr ef er ences object.

That is why you need the following, correct and complete, configuration when injecting r equest -, sessi on-,
and gl obal Sessi on- scoped beansinto collaborating objects:

<bean i d="user Preferences" class="com foo. User Preferences" scope="session">
<aop: scoped- pr oxy/ >
</ bean>

<bean id="user Manager" cl ass="com f 0o. User Manager " >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

3.4.4. Custom scopes

As of Spring 2.0, the bean scoping mechanism in Spring is extensible. This means that you are not limited to
just the bean scopes that Spring provides out of the box; you can define your own scopes, or even redefine the
existing scopes (although that last one would probably be considered bad practice - please note that you cannot
override the built-in si ngl et on and pr ot ot ype SCOPES).

Scopes are defined by the or g. spri ngf ramewor k. beans. fact ory. confi g. Scope interface. Thisisthe interface
that you will need to implement in order to integrate your own custom scope(s) into the Spring container. The
interface itself is quite simple, with two methods to get and remove an object from an underlying storage
mechanism respectively. Possible custom scopes are beyond the scope of this reference manual. Y ou may wish
to look at the Scope implementations that are supplied with Spring for an idea of how to go about implementing
your own.

The remainder of this section details how, after you have written and tested one or more custom Scope
implementations, you then go about making the Spring container aware of your new scope. The central method
to register a new Scope with the Spring container is declared on the Confi gur abl eBeanFact ory interface
(implemented by most of the concrete BeanFact ory implementations that ship with Spring); this central method
is displayed below:

voi d regi sterScope(String scopeName, Scope scope);

The first argument to the r egi st er Scope(. .) method is the unique name associated with a scope; examples of
such names in the Spring container itself are ' singleton' and ' prototype' . The second argument to the
regi st er Scope(..) method is an actual instance of the custom Scope implementation that you wish to register
and use.

Let's assume that you have written your own custom Scope implementation, and you have registered it like so:

/1 note: the Threadscope cl ass does not exist; | nmade it up for the sake of this exanple
Scope custonScope = new Thr eadScope();
beanFact ory. regi st er Scope("thread", scope);

Y ou can then create bean definitions that adhere to the scoping rules of your custom Scope like so:

<bean id="..." class="..." scope="thread"/>

Spring Framework (2.0) 62

The 1oC container

If you have your own custom Scope implementation(s), you are not just limited to only programmatic
registration of said custom scope(s). You can also do the Scope registration declaratively, using a custom
BeanFact or yPost Pr ocessor implementation, the Cust onmScopeConf i gur er class. The
BeanFact or yPost Processor interface is one of the primary means of extending the Spring 10C container, and
is described in alater section of this very chapter.

The declarative registration of custom Scope implementations using the Cust onScopeConfi gurer class is
shown below:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans” xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"
xsi : schemalLocat i on="
http://ww. spri ngframewor k. or g/ schenma/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. or g/ schema/ aop http://ww. springframewor k. or g/ schena/ aop/ spri ng-aop- 2. 0. xsd" >

<bean cl ass="org. spri ngframework. beans. factory. confi g. Cust onScopeConfi gurer">
<property nanme="scopes">
<map>
<entry key="thread" val ue="com f oo. Thr eadScope"/ >
</ map>
</ property>
</ bean>

<bean i d="bar" class="x.y.Bar" scope="thread">
<property name="nanme" val ue="Ri ck"/>
<aop: scoped- pr oxy/ >

</ bean>

<bean i d="fo00" class="x.y.Foo">
<property nanme="bar" ref="bar"/>
</ bean>

</ beans>

The cust onBcopeConfi gurer aso allows you to specify actual d ass instances as entry values, as well as
actual scope implementation instances; see the Javadocs for the Cust onScopeConf i gurer classfor details.

3.5. Customizing the nature of a bean

3.5.1. Lifecycle interfaces

Spring provides several marker interfaces to change the behavior of your bean in the container; they include
I'nitializingBean and Di sposabl eBean. Implementing these interfaces will result in the container calling
afterPropertiesSet () for theformer and dest roy() for the latter to allow the bean to perform certain actions
upon initialization and destruction.

Internally, Spring uses BeanPost Processor implementations to process any marker interfaces it can find and
call the appropriate methods. If you need custom features or other lifecycle behavior Spring doesn't offer
out-of-the-box, you can implement a BeanPost Processor yourself. More information about this can be found
in Section 3.7, “ Container extension points”.

All the different lifecycle marker interfaces are described below. In one of the appendices, you can find
diagram that show how Spring manages beans and how those lifecycle features change the nature of your beans
and how they are managed.

3.5.1.1. Initialization callbacks

Spring Framework (2.0) 63

The 1oC container

Implementing the org. springframework. beans. factory. InitializingBean alows a bean to perform
initialization work after all necessary properties on the bean are set by the container. The I ni ti al i zi ngBean
interface specifies exactly one method:

void afterPropertiesSet() throws Exception;

Generally, the use of the I ni ti al i zi ngBean interface can be avoided (and is discouraged since it unnecessarily
couples the code to Spring). A bean definition provides support for a generic initialization method to be
specified. In the case of XML-based configuration metadata, this is done using the * i ni t - net hod' attribute.
For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nethod="init"/>

public class Exanpl eBean {

public void init() {
/! do sonme initialization work
}

Is exactly the same as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public cl ass Anot her Exanpl eBean i npl enents InitializingBean {

public void afterPropertiesSet() {
/1 do sone initialization work

}

... but does not couple the code to Spring.

3.5.1.2. Destruction callbacks

Implementing the or g. spri ngf r amewor k. beans. f act ory. Di sposabl eBean interface allows a bean to get a
callback when the container containing it is destroyed. The Di sposabl eBean interface specifies one method:

voi d destroy() throws Exception

Generdly, the use of the Di sposabl eBean marker interface can be avoided (and is discouraged since it
unnecessarily couples the code to Spring). A bean definition provides support for a generic destroy method to
be specified. When using XML-based configuration metadata this is done viathe ' dest roy- net hod' attribute
on the <bean/ >. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy- net hod="cl eanup"/>

public class Exanpl eBean {

public void cleanup() {
/1 do some destruction work (like rel easing pool ed connecti ons)
}

Is exactly the same as...

Spring Framework (2.0) 64

The 1oC container

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public cl ass Anot her Exanpl eBean i npl enents Di sposabl eBean {

public void destroy() {
/1 do sonme destruction work (like rel easing pool ed connecti ons)

}

.. but does not couple the code to Spring.

3.5.1.2.1. Default initialization & destroy methods

When you are writing initialization and destroy method callbacks that do not use the Spring-specific
I'nitializingBean and Di sposabl eBean callback interfaces, one (in the experience of this author) typically
finds onesealf writing methods with names such asinit(),initialize(), di spose(), €c. The names of such
lifecycle callback methods are (hopefully!) standardized across a project so that developers on a team all use
the same method names and thus ensure some level of consistency.

The Spring container can now be configured to ' | ook’ for named initialization and destroy callback method
names on every bean. This means that you as an application developer can simply write your application
classes, use a convention of having an initialization calback caled init (), and then (without having to
configure each and every bean with, in the case of XML-based configuration, an ' init-nethod="init""
attribute) be safe in the knowledge that the Spring 10C container will call that method when the bean is being
created (and in accordance with the standard lifecycle callback contract described previously).

Let'slook at an example to make the use of this feature completely clear. For the sake of the example, let us say
that one of the coding conventions on a project is that al initialization callback methods are to be named
i ni t () and that destroy callback methods are to be called dest roy() . Thisleadsto classeslike so...

public class DefaultBl ogService inplenents Bl ogService {
private Bl ogDao bl ogDao;

public void setBl ogDao(Bl ogDao bl ogDao) {
t hi s. bl ogDao = bl ogDao;
}

/1 this is (unsurprisingly) the initialization callback nmethod
public void init() {
if (this.blogbDao == null) {
throw new ||| egal St at eExcepti on("The [bl ogDao] property nust be set.");
}

The attendant XML configuration for the above class, and making use of the by-convention initialization
callback method configuration, would look like so:
<beans defaul t-init-method="init">
<bean i d="bl ogServi ce" class="com f o0o. Def aul t Bl ogServi ce">
<property nanme="bl ogDao" ref="bl ogbDao" />

</ bean>

</ beans>

Notice the use of the' def aul t -i ni t - met hod' attribute on the top-level <beans/ > element. The presence of this
attribute means that the Spring 10C container will recognize a method called *init* on beans as being the
initialization method callback, and when a bean is being created and assembled, if the bean's class has such a

Spring Framework (2.0) 65

The 1oC container

method, it will be invoked at the appropriate time.

Destroy method callbacks are configured similarly (in XML that is) using the ' def aul t - dest r oy- net hod'
attribute on the top-level <beans/ > element.

The use of this feature can save you the (small) housekeeping chore of specifying an initialization and destroy
method callback on each and every bean, and it is great for enforcing a consistent naming convention for
initialization and destroy method callbacks (and consistency is something that should always be aimed for).

One final word... let's say you want to use this feature, but you have some existing beans where the underlying
classes dready have for example initialization callback methods that are named at variance with the
convention. You can always override the default by specifying (in XML that is) the method name using the
"init-nethod and' destroy-nethod' attributes on the <bean/ > element itself.

3.5.1.2.2. Shutting down the Spring lIoC container gracefully in non-web
applications

Note

e
This next section does not apply to web applications (in case the title of this section did not make
that abundantly clear). Spring's web-based Appli cationContext implementations already have
code in place to handle shutting down the Spring 10C container gracefully when the relevant web
application is being shutdown.

If you are using Spring's 10C container in a non-web application environment, for example in a rich client
desktop environment, and you want the container to shutdown gracefully and call the relevant destroy callbacks
on your singleton beans, you will need to register a shutdown hook with the VM. This is quite easy to do (see
below), and will ensure that your Spring 10C container shuts down gracefully and that all resources held by
your singletons are released (of course it is still up to you to both configure the destroy callbacks for your
singletons and implement such destroy callbacks correctly).

So to register a shutdown hook that enables the graceful shutdown of the relevant Spring 10C container, you
smply need to cal the registerShutdownHook() method that is declared on the
Abstract Appl i cati onCont ext class. To wit...

i mport org.springframework. cont ext. support. Abstract Appli cati onCont ext ;
i nport org. springfranework. cont ext. support.C assPat hXm Appl i cati onCont ext ;

public final class Boot {
public static void main(final String[] args) throws Exception {
Abstract Appl i cati onCont ext ctx
= new Cl assPat hXm Appl i cati onContext(new String []{"beans.xm "});

/1 add a shutdown hook for the above context...
ct x. regi st er Shut downHook() ;

// app runs here...

/1 main method exits, hook is called prior to the app shutting down...

3.5.2. Knowing who you are

3.5.2.1. BeanFact oryAwar e

Spring Framework (2.0) 66

The 1oC container

A class which implementsthe or g. spri ngf r amewor k. beans. f act ory. BeanFact or yAwar e interface is provided
with areference to the BeanFact or y that created it, when it is created by that BeanFact ory.

public interface BeanFactoryAware {

voi d set BeanFact ory(BeanFactory beanFactory) throws BeansExcepti on;

This alows beans to manipulate the BeanFactory that created them programmatically, through the
BeanFact ory interface, or by casting the reference to a known subclass of this which exposes additional
functionality. Primarily this would consist of programmatic retrieval of other beans. While there are cases when
this capability is useful, it should generally be avoided, since it couples the code to Spring, and does not follow
the Inversion of Control style, where collaborators are provided to beans as properties.

An alternative option that is equivalent in effect to the BeanFact or yAwar e-based approach is to use the
org. springframewor k. beans. fact ory. confi g. Obj ect Fact or yCr eat i ngFact or yBean. (It should be noted that
this approach still does not reduce the coupling to Spring, but it does not violate the central principal of 10C as
much as the BeanFact or yAwar e-based approach.)

The bj ect Fact or yCr eat i ngFact or yBean iS a Fact oryBean implementation that returns a reference to an
object (factory) that can in turn be used to effect a bean lookup. The bj ect Fact or yCr eat i ngFact or yBean
class does itself implement the BeanFact or yAwar e interface; what client beans are actually injected with is an
instance of the aj ect Fact ory interface. This is a Spring-specific interface (and hence there is still no total
decoupling from Spring), but clients can then use the j ect Fact ory's get oj ect () method to effect the bean
lookup (under the hood the oj ect Fact or y implementation instance that is returned simply delegates down to a
BeanFactory to actualy lookup a bean by name). All that you need to do is supply the
Obj ect Fact or yCr eat i ngFact or yBean with the name of the bean that is to be looked up. Let's look at an
example:

package x.y;
public class NewsFeed {
private String news;
public void set News(String news) {

this. news = news;
}

public String get News() ({
return this.toString() + ": '" + news + """
}

package X.y;
i mport org.springframework. beans. factory. Qbj ect Factory;
public cl ass NewsFeedManager {

private bjectFactory factory;

public void setFactory(ObjectFactory factory) {

this.factory = factory;
}

public void printNews() {
/1 here is where the | ookup is perforned; note that there is no
/1 need to hardcode the name of the bean that is being | ooked up...
NewsFeed news = (NewsFeed) factory.get Qbject();
System out. println(news. get News());

Spring Framework (2.0) 67

The 1oC container

Find below the XML configuration to wire together the above classes using the
bj ect Fact or yCr eat i ngFact or yBean approach.

<beans>
<bean i d="newsFeedManager" cl ass="x.y. NewsFeedManager" >
<property name="factory">
<bean

cl ass="org. spri ngf ramewor k. beans. f act ory. confi g. Obj ect Fact or yCr eat i ngFact or yBean" >

<property name="t ar get BeanNanme" >
<idref |ocal ="newsFeed" />

</ property>

</ bean>
</ property>
</ bean>
<bean i d="newsFeed" cl ass="x.y. NewsFeed" scope="prototype">
<property name="news" value="... that's fit to print!" />
</ bean>
</ beans>

And here is a small driver program to test the fact that new (prototype) instances of the newsFeed bean are
actually being returned for each call to the injected j ect Fact ory inside the NewsFeedManager 'S pri nt News()
method.

i mport org.springframework. cont ext. Appl i cati onCont ext;
i nport org.springfranmework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
i mport X.y.NewsFeedManager ;

public class Main {
public static void main(String[] args) throws Exception {

Appl i cationContext ctx = new C assPat hXm Appli cati onCont ext ("beans. xm ");
NewsFeedManager manager = (NewsFeedManager) ctx. get Bean("newsFeedMVanager");
manager . pri nt News() ;

manager . pri nt News() ;

The output from running the above program will look like so (results will of course vary on your machine).

X.y. NewsFeed@292d26: '... that's fit to print!"’
X.y. NewsFeed@329c5: '... that's fit to print!

3.5.2.2. BeanNanmeAwar e

If abean implementsthe or g. spri ngf ranewor k. beans. f act ory. BeanNaneAwar e interface and is deployed in a
BeanFact ory, the BeanFact ory will call the bean through this interface to inform the bean of the id it was
deployed under. The callback will be invoked after population of normal bean properties but before an
initialization callback like 1 ni ti al i zi ngBean's after PropertiesSet or a custom init-method.

3.6. Bean definition inheritance

A bean definition potentially contains alarge amount of configuration information, including container specific
information (i.e. initialization method, static factory method name, etc.) and constructor arguments and
property values. A child bean definition is a bean definition which inherits configuration data from a parent
definition. It is then able to override some values, or add others, as needed. Using parent and child bean
definitions can potentially save alot of typing. Effectively, thisis aform of templating.

When working with a BeanFactory programmatically, child bean definitions are represented by the
Chi | dBeanDef i ni tion class. Most users will never work with them on this level, instead configuring bean

Spring Framework (2.0) 68

The 1oC container

definitions declaratively in something like the Xm BeanFactory. When using XML-based configuration
metadata a child bean definition is indicated simply by using the ' parent ' attribute, specifying the parent bean
as the value of this attribute.

<bean id="inheritedTestBean" abstract="true"
cl ass="org. spri ngf ramewor k. beans. Test Bean" >
<property name="nanme" val ue="parent"/>
<property name="age" val ue="1"/>
</ bean>

<bean id="inheritsWthDi fferentC ass"
cl ass="org. spri ngf ramewor k. beans. Deri vedTest Bean"
parent ="inheritedTest Bean" init-nmethod="initialize">

<property name="nanme" val ue="override"/>
<!-- the age property value of 1 will be inherited from parent -->

</ bean>

A child bean definition will use the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, i.e. it must accept the
parent's property values.

A child bean definition will inherit constructor argument values, property values and method overrides from the
parent, with the option to add new values. If any init-method, destroy-method and/or st ati ¢ factory method
settings are specified, they will override the corresponding parent settings.

The remaining settings will always be taken from the child definition: depends on, autowire mode, dependency
check, singleton, scope, lazy init.

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute. In the case that the parent definition does not specify a class, and so explicitly marking the
parent bean definition asabst ract isrequired:

<bean i d="inheritedTest BeanWt hout Cl ass" abstract="true">
<property name="nanme" val ue="parent"/>
<property nanme="age" val ue="1"/>

</ bean>

<bean i d="inheritsWthd ass" class="org. springfranework. beans. Deri vedTest Bean"
parent ="inheritedTest BeanWt hout Cl ass" init-nmethod="initialize">
<property name="nanme" val ue="override"/>
<l-- age will inherit the value of 1 fromthe parent bean definition-->
</ bean>

The parent bean cannot get instantiated on its own since it is incomplete, and it is also explicitly marked as
abstract. When a definition is defined to be abstract like this, it is usable only as a pure template bean
definition that will serve as a parent definition for child definitions. Trying to use such an abst ract parent bean
on its own (by referring to it as a ref property of another bean, or doing an explicit get Bean() call with the
parent bean id), will result in an error. Similarly, the container'sinternal pr el nstant i at eSi ngl et ons() method
will completely ignore bean definitions which are defined as abstract.

Note

e
ApplicationContexts (but not BeanFactories) will by default pre-instantiate all singletons.
Therefore it is important (at least for singleton beans) that if you have a (parent) bean definition
which you intend to use only as a template, and this definition specifies a class, you must make
sure to set the 'abstract' attribute to 'true’, otherwise the application context will actualy (attempt
to) pre-instantiate the abst r act bean.

Spring Framework (2.0) 69

The 1oC container

3.7. Container extension points

The 1oC component of the Spring Framework has been designed for extension. There is typically no need for
an application developer to subclass any of the various BeanFact ory Or Appli cati onCont ext implementation
classes. The Spring 10C container can be infinitely extended by plugging in implementations of special
integration interfaces. The next few sections are devoted to detailing all of these various integration interfaces.

3.7.1. Customizing beans using BeanPost Processor s

The first extension point that we will look at is the BeanPost Processor interface. This interface defines a
number of callback methods that you as an application developer can implement in order to provide your own
(or override the containers default) instantiation logic, dependency-resolution logic, and so forth. If you want to
do some custom logic after the Spring container has finished instantiating, configuring and otherwise
initializing a bean, you can plug in one or more BeanPost Pr ocessor implementations.

You can configure multiple BeanPost Processors if you wish. You can control the order in which these
BeanPost Processors execute by setting the 'order' property (you can only set this property if the
BeanPost Processor implements the o der ed interface; if you write your own BeanPost Processor you should
consider implementing the o dered interface too); consult the Javadocs for the BeanPost Processor and
O der ed interfaces for more details.

Note

"9
BeanPost Processor s operate on bean (or object) instances; that is to say, the Spring 1oC container
will have instantiated a bean instance for you, and then BeanPost Processors get a chance to do
their stuff.

If you want to change the actual bean definition (i.e. the recipe that defines the bean), then you
rather need to use a BeanFact oryPost Processor (described below in the section entitled
Section 3.7.2, “Customizing configuration metadata with BeanFact or yPost Processors”.

Also, BeanPost Processors are scoped per-container. This is only relevant if you are using
container hierarchies. If you define a BeanPost Processor in one container, it will only do its stuff
on the beans in that container. Beans that are defined in another container will not be
post-processed by BeanPost Processor s in another container, even if both containers are part of the
same hierarchy.

The org. spri ngframewor k. beans. f act ory. confi g. BeanPost Processor interface consists of exactly two
callback methods. When such a class is registered as a post-processor with the container (see below for how
thisregistration is effected), for each bean instance that is created by the container, the post-processor will get a
callback from the container both before any container initialization methods (such as after PropertiesSet and
any declared init method) are called, and also afterwards. The post-processor is free to do what it wishes with
the bean instance, including ignoring the callback completely. A bean post-processor will typically check for
marker interfaces, or do something such as wrap a bean with a proxy; some of the Spring AOP infrastructure
classes are implemented as bean post-processors and they do this proxy-wrapping logic.

It is important to know that a BeanFactory treats bean post-processors dlightly differently than an
Appl i cationCont ext. AN Appli cationCont ext Will automatically detect any beans which are defined in the
configuration metadata which is supplied to it that implement the BeanPost Processor interface, and register
them as post-processors, to be then called appropriately by the container on bean creation. Nothing else needs
to be done other than deploying the post-processor in a similar fashion to any other bean. On the other hand,

Spring Framework (2.0) 70

The 1oC container

when using a BeanFact ory implementation, bean post-processors explicitly have to be registered, with code
like this:

Conf i gur abl eBeanFactory factory = new Xm BeanFactory(...);

/1 now regi ster any needed BeanPostProcessor instances
MyBeanPost Processor post Processor = new MyBeanPost Processor () ;
fact ory. addBeanPost Processor (post Processor);

// now start using the factory

This explicit registration step is not convenient, and this is one of the reasons why the various
Appl i cationCont ext implementations are preferred above plain BeanFact ory implementations in the vast
majority of Spring-backed applications, especially when using BeanPost Pr ocessors.

Note

.

"8

You typically don't want to have BeanPost Processors marked as being lazily-initialized. If they
are marked as such, then the Spring container will never instantiate them, and thus they won't get a
chance to apply their custom logic. If you are using the ' defaul t-1azy-init' attribute on the
declaration of your <beans/ > element, be sure to mark your various BeanPost Processor bean
definitionswith' 1 azy-init="fal se"".

Find below some examples of how to write, register, and use BeanPost Processors in the context of an
Appl i cati onCont ext .

3.7.1.1. Example: Hello World, BeanPost Processor -Style

This first example is hardly compelling, but serves to illustrate basic usage. All we are going to do is code a
custom BeanPost Processor implementation that simply invokes the t oSt ri ng() method of each bean asiit is
created by the container and prints the resulting string to the system console. Yes, it is not hugely useful, but
servesto get the basic concepts across before we move into the second example which is actually useful.

Find below the custom BeanPost Pr ocessor implementation class definition:

package scri pting;

i mport org.springframework. beans. factory. confi g. BeanPost Processor ;
i nport org. springfranework. beans. BeansExcept i on;

public class InstantiationTraci ngBeanPost Processor i npl ements BeanPost Processor {
/'l sinply return the instantiated bean as-is

public oject postProcessBeforelnitialization(Object bean, String beanNane) throws BeansException {
return bean; // we could potentially return any object reference here...

}

public oject postProcessAfterlnitialization(Object bean, String beanNanme) throws BeansException {
Systemout.println("Bean '" + beanNane + "' created : " + bean.toString());
return bean;

}

Here is the attendant XM L-based configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: | ang="http://ww. spri ngfranmewor k. or g/ schenma/ | ang"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
htt p: // ww. spri ngfranewor k. org/ schena/ | ang http://ww. springfranework. org/ schena/| ang/ spri ng-1 ang- 2. 0. xsd" >

Spring Framework (2.0) 71

The 1oC container

<l ang: groovy i d="nmessenger"
scri pt - sour ce="cl asspat h: org/ spri ngf ramewor k/ scri pti ng/ gr oovy/ Messenger. gr oovy" >
<l ang: property nane="message" val ue="Fiona Apple Is Just So Dreany."/>
</l ang: gr oovy>

<I--
when the above bean (' nmessenger') is instantiated, this custom
BeanPost Processor i npl enentation will output the fact to the system console
-->

<bean cl ass="scripting.Instantiati onTraci ngBeanPost Processor"/>

</ beans>

Notice how the | nst ant i at i onTr aci ngBeanPost Processor issimply defined; it doesn't even have a name, and
becauseit is abean it can be dependency injected just like any other bean. (The above configuration also just so
happens to define a bean that is backed by a Groovy script. The Spring 2.0 dynamic language support is
detailed in the chapter entitled Chapter 24, Dynamic language support.)

Find below asmall driver script to exercise the above code and configuration;

i mport org.springframework. cont ext. Appl i cati onCont ext;
i mport org.springframework. cont ext. support. d assPat hXm Appl i cati onCont ext ;
i mport org.springframework. scri pting. Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {
Appl i cationContext ctx = new C assPat hXm Appli cati onContext ("scripting/beans.xm");
Messenger messenger = (Messenger) ctx.getBean("messenger");
System out. printl n(nmessenger);

The output of executing the above program will be (something like) this:

Bean ' nessenger' created : org.springframework. scripting.groovy. GoovyMessenger @72961
org. springframewor k. scri pting. groovy. G oovyMessenger @72961

3.7.1.2. Example: The Requi r edAnnot at i onBeanPost Pr ocessor

Using marker interfaces or annotations in conjunction with a custom BeanPost Processor implementation is a
common means of extending the Spring 10C container. This next example is a bit of a cop-out, in that you are
directed to the section entitled Section 25.3.1, “@Requi red” which demonstrates the usage of a custom
BeanPost Processor implementation that ships with the Spring distribution which ensures that JavaBean
properties on beans that are marked with an (arbitrary) annotation are actually (configured to be)
dependency-injected with avalue.

3.7.2. Customizing configuration metadata with BeanFact or yPost Processor s

The next extension point that we will look at is the
org. spri ngf ramewor k. beans. factory. confi g. BeanFact or yPost Processor. The semantics of this interface
are similar to the BeanPost Processor, with one major difference. BeanFact or yPost Processors operate on
bean definitions (i.e. the configuration metadata that is supplied to a container); that is to say, the Spring 1oC
container will allow BeanFact or yPost Processor s to read the configuration metadata and potentially change it
before the container has actually instantied any other beans.

Y ou can configure multiple BeanFact or yPost Processor s if you wish. You can control the order in which these
BeanFact or yPost Processors execute by setting the ' order' property (you can only set this property if the
BeanFact or yPost Processor implements the Odered interface; if you write your own

Spring Framework (2.0) 72

The 1oC container

BeanFact or yPost Processor you should consider implementing the O dered interface too); consult the
Javadocs for the BeanFact or yPost Processor and Or der ed interfaces for more details.

Note

-

e

If you want to change the actual bean instances (i.e. the objects that are created from the
configuration metadata), then you rather need to use a BeanPost Pr ocessor (described above in the
section entitled Section 3.7.1, “ Customizing beans using BeanPost Processors”.

Also, BeanFact or yPost Processor s are scoped per-container. Thisisonly relevant if you are using
container hierarchies. If you define a BeanFact or yPost Processor in one container, it will only do
its stuff on the bean definitions in that container. Bean definitions in another container will not be
post-processed by BeanFact or yPost Processors in another container, even if both containers are
part of the same hierarchy.

A bean factory post-processor is executed manually (in the case of aBeanFact ory) or automatically (in the case
of aAppl i cati onCont ext) to apply changes of some sort to the configuration metadata that defines a container.
Spring includes a number of pre-existing bean factory post-processors, such as Pr opert yResour ceConf i gur er
and Proper t yPl acehol der Conf i gur er, both described below, and BeanNaneAut oPr oxyCr eat or , which is very
useful for wrapping other beans transactionally or with any other kind of proxy, as described later in this
manual. The BeanFact or yPost Processor can be used to add custom property editors.

In aBeanFact ory, the process of applying aBeanFact or yPost Processor ismanual, and will be similar to this:

Xm BeanFactory factory = new Xm BeanFact ory(new Fi |l eSyst enResour ce("beans. xm "));

/1 bring in sone property values froma Properties file
Propert yPl acehol der Confi gurer cfg = new PropertyPl acehol der Confi gurer();
cfg. setLocation(new Fi |l eSyst enResource("j dbc. properties"));

/1 now actually do the repl acenent
cf g. post ProcessBeanFact ory(factory);

This explicit registration step is not convenient, and this is one of the reasons why the various
Appl i cati onCont ext implementations are preferred above plain BeanFactory implementations in the vast
majority of Spring-backed applications, especially when using BeanFact or yPost Pr ocessor s.

An ApplicationContext will detect any beans which are deployed into it which implement the
BeanFact or yPost Processor interface, and automatically use them as bean factory post-processors, at the
appropriate time. Nothing else needs to be done other than deploying these post-processor in a similar fashion
to any other bean.

Note

.

"8

Just as in the case of BeanPostProcessors, Yyou typicaly dont want to have
BeanFact or yPost Processors marked as being lazily-initialized. If they are marked as such, then
the Spring container will never instantiate them, and thus they won't get a chance to apply their
custom logic. If you are using the ' defaul t-1azy-init' attribute on the declaration of your
<beans/ > element, be sure to mark your various BeanFact or yPost Processor bean definitions with
"lazy-init="fal se"".

3.7.2.1. Example: the Propert yPl acehol der Conf i gur er

The Propert yPl acehol der Confi gurer, implemented as a bean factory post-processor, is used to externalize

Spring Framework (2.0) 73

The 1oC container

some property values from a BeanFact or y definition, into another separate file in the standard Java Pr operti es
format. This is useful to allow the person deploying an application to customize some key properties (for
example database URLS, usernames and passwords), without the complexity or risk of modifying the main
XML definition file or files for the container.

Consider the following XML-based configuration metadata fragment, where a Dat aSour ce with placeholder
values is defined. We will configure some properties from an external Properti es file, and at runtime, we will
apply a PropertyPl acehol der Configurer to the metadata which will replace some properties of the
datasource:

<bean i d="dat aSour ce" destroy-nethod="cl ose"
cl ass="or g. apache. cormons. dbcp. Basi cDat aSour ce" >
<property nane="driverC assNane" val ue="${j dbc. dri ver Cl assNane}"/ >
<property nanme="url" val ue="${jdbc.url}"/>
<property name="user nane" val ue="j dbc. user nane"/ >
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>

The actual values come from another file in the standard Java Proper ti es format:

j dbc. driverd assNane=or g. hsql db. j dbcDri ver
j dbc. url =j dbc: hsql db: hsql : // product i on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

The Propert yPl acehol der Confi gurer doesn't only look for propertiesin the Properti es file you specify, but
also checks against the Java syst em properties if it cannot find a property you are trying to use. This behavior
can be customized by setting the syst enProperti esMode property of the configurer. It has three values, one to
tell the configurer to always override, one to let it never override and one to let it override only if the property
cannot be found in the properties file gspecified. Please consult the Javadoc for the
Proper ti esPl acehol der Confi gurer for more information.

3.7.2.2. Example: the PropertyOverri deConfi gurer

The PropertyOverrideConfigurer, another bean factory post-processor, is smilar to the
PropertyPl acehol der Confi gurer, but in contrast to the latter, the origina definitions can have default values
or no values at al for bean properties. If an overriding Properti es file does not have an entry for a certain bean
property, the default context definition is used.

Note that the bean factory definition is not aware of being overridden, so it is not immediately obvious when
looking at the XML definition file that the override configurer is being used. In case that there are multiple
PropertyOverri deConfi gurer instances that define different values for the same bean property, the last one
will win (due to the overriding mechanism).

Properties file configuration lines are expected to be in the format:

beanNane. pr opert y=val ue

An example properties file might look like this:

dat aSour ce. dri ver Cl assName=com nysql . j dbc. Dri ver
dat aSour ce. ur | =j dbc: nmysql : mydb

This example file would be usable against a container definition which contains a bean called dataSource,
which has driver and url properties.

Spring Framework (2.0) 74

The 1oC container

Note that compound property names are also supported, as long as every component of the path except the final
property being overridden is already non-null (presumably initialized by the constructors). In this example...

foo. fred. bob. sanmy=123

... the sammy property of the bob property of the fred property of the f oo bean is being set to the scalar value
123.

3.7.3. Customizing instantiation logic using Fact or yBeans

The org. spri ngframewor k. beans. f act ory. Fact or yBean interface is to be implemented by objects that are
themselves factories.

The Fact or yBean interface is a point of pluggability into the Spring 10C containers instantiation logic. If you
have some complex initialization code that is better expressed in Java as opposed to a (potentially) verbose
amount of XML, you can create your own Fact or yBean, Write the complex initialization inside that class, and
then plug your custom Fact or yBean into the container.

The Fact or yBean interface provides three methods:

e (Object getvject(): hasto return an instance of the object this factory creates. The instance can possibly
be shared (depending on whether this factory returns singletons or prototypes).

* bool ean isSingleton(): hastoreturntrue if thisFact or yBean returns singletons, f al se otherwise

* O ass get Obj ect Type() : hasto return either the object type returned by the get Obj ect () method or nul | if
the typeisn't known in advance

The Fact or yBean concept and interface is used in a number of places within the Spring Framework; at the time
of writing there are over 50 implementations of the Fact or yBean interface that ship with Spring itself.

Finally, there is sometimes a need to ask a container for an actual Fact or yBean instance itself, not the bean it
produces. This may be achieved by prepending the bean id with ' & (sans quotes) when calling the get Bean
method of the BeanFactory (including ApplicationContext). So for a given Fact oryBean with an id of
nmyBean, invoking get Bean("nyBean") on the container will return the product of the FactoryBean, but
invoking get Bean(" &nyBean") Will return the Fact or yBean instance itself.

3.8. The Appl i cati onCont ext

While the beans package provides basic functionality for managing and manipulating beans, often in a
programmatic way, the context package adds ApplicationContext, which enhances BeanFactory
functionality in a more framework-oriented style. Many users will use Appl i cati onCont ext in a completely
declarative fashion, not even having to create it manually, but instead relying on support classes such as
Cont ext Loader to automatically start an Appl i cati onCont ext as part of the normal startup process of a J2EE
web-app. Of course, it is still possible to programmatically create an ApplicationContext.

The basis for the context package is the ApplicationContext interface, located in the
org. springfranework. cont ext package. Deriving from the BeanFactory interface, it provides all the
functionality of BeanFactory. To alow working in a more framework-oriented fashion, using layering and
hierarchical contexts, the context package also provides the following functionality:

Spring Framework (2.0) 75

http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html

The 1oC container

e MessageSour ce, providing access to messages in i18n-style
» Accessto resources, such as URLs and files
» Event propagation to beans implementing the Appl i cat i onLi st ener interface

¢ Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, for example
the web layer of an application

Asthe Appl i cati onCont ext includes al functionality of the BeanFact ory, it is generally recommended that it
be used over the BeanFact ory, except for afew limited situations such as perhaps in an Appl et , where memory
consumption might be critical, and a few extra kilobytes might make a difference. The following sections
describe functionality that Appl i cati onCont ext addsto basic BeanFact ory capabilities.

3.8.1. Internationalization using MessageSour ces

The ApplicationContext interface extends an interface called MessageSource, and therefore provides
messaging (i18n or internationalization) functionality. Together with the Hi er ar chi cal MessageSour ce, capable
of resolving hierarchical messages, these are the basic interfaces Spring provides to do message resolution.
Let's quickly review the methods defined there:

* String getMessage(String code, Object[] args, String default, Locale |oc): the basic method
used to retrieve a message from the MessageSour ce. When no message is found for the specified locale, the
default message is used. Any arguments passed in are used as replacement values, using the MessageFor nat
functionality provided by the standard library.

e String get Message(String code, Cbject[] args, Locale |oc): essentially the same as the previous
method, but with one difference: no default message can be specified; if the message cannot be found, a
NoSuchMessageExcept i on iSthrown.

e String get Message(MessageSour ceResol vabl e resol vabl e, Local e |ocale): al properties used in the
methods above are also wrapped in a class named MessageSour ceResol vabl e, which you can use via this
method.

When an Appl i cat i onCont ext gets loaded, it automatically searches for a MessageSour ce bean defined in the
context. The bean has to have the name nessageSour ce. If such a bean is found, all calls to the methods
described above will be delegated to the message source that was found. If no message source was found, the
Appl i cati onCont ext attempts to seeif it has a parent containing a bean with the same name. If so, it uses that
bean as the MessageSour ce. If it can't find any source for messages, an empty St ati cMessageSour ce Will be
instantiated in order to be able to accept calls to the methods defined above.

Spring currently provides two MessageSour ce implementations. These are the Resour ceBundl eMessageSour ce
and the st at i cMessageSour ce. Both implement Nest i ngMessageSour ce in order to do nested messaging. The
St at i cMessageSour ce iS hardly ever used but provides programmatic ways to add messages to the source. The
Resour ceBundl eMessageSour ce iSmore interesting and is the one we will provide an example for:

<beans>
<bean i d="nessageSour ce"
cl ass="org. spri ngfranmewor k. cont ext . support. Resour ceBundl eMessageSour ce" >
<property nanme="basenanes" >
<list>
<val ue>f or mat </ val ue>
<val ue>excepti ons</ val ue>
<val ue>w ndows</ val ue>
</list>
</ property>
</ bean>

Spring Framework (2.0) 76

The 1oC container

</ beans>

This assumes you have three resource bundles defined on your classpath called f ormat, exceptions and
wi ndows. Using the JDK standard way of resolving messages through ResourceBundles, any request to resolve
a message will be handled. For the purposes of the example, lets assume the contents of two of the above
resource bundlefiles are...

in 'format. properties'
nessage=Al | i gators rock

in 'exceptions.properties
argunent . requi red=The '{0}' argunent is required

Some (admittedly trivial) driver code to exercise the MessageSource functionality can be found below.
Remember that all Appl i cati onCont ext implementations are also MessageSour ce implementations and so can
be cast to the MessageSour ce interface.

public static void main(String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ") ;
String nmessage = resources. get Message(" nmessage”, null, "Default", null)
System out . printl n(message) ;

The resulting output from the above program will be...

Al ligators rock

So to summarize, the MessageSour ce isdefined in afile called ' beans. xm * (thisfile exists at the root of your
classpath). The ' messageSource' bean definition refers to a number of resource bundles via it's basenanes
property; the three files that are passed in the list to the basenanes property exist as files at the root of your
classpath (and are called format.properties, exceptions.properties, and w ndows.properties
respectively).

Lets look at another example, and this time we will look at passing arguments to the message lookup; these
arguments will be converted into strings and inserted into placeholders in the lookup message. This is perhaps
best explained with an example:
<beans>
<l-- this MessageSource i S being used in a web application -->
<bean i d="nessageSour ce" cl ass="org. springfranmewor k. cont ext. support. Resour ceBundl eMessageSour ce" >
<property name="baseNane" val ue="WEB-| NF/test-nmessages"/>
</ bean>
<I-- let's inject the above MssageSource into this PQIO -->
<bean i d="exanpl e" cl ass="com f00. Exanpl e" >
<property name="nessages" ref="nessageSource"/>
</ bean>

</ beans>

public class Exanple {
private MessageSource nessages;
public void set Messages(MessageSour ce nmessages) {

t hi s. nessages = nessages;
}

public void execute() {

Spring Framework (2.0) 77

The 1oC container

String nmessage = this. messages. get Message("argunent.required",
new Cbject [] {"userDao"}, "Required", null);
System out . printl n(message) ;

The resulting output from the invocation of the execut e() method will be...

The 'userDao' argument is required.

With regard to internationalization (i18n), Spring's various MessageResour ce implementations follow the same
locale resolution and fallback rules as the standard JDK ResourceBundle. In short, and continuing with the
example ' nessageSour ce' defined previoudly, if you want to resolve messages against the British (en-GB)
locale, you would create files called format_en_GB. properties, exceptions_en_GB.properties, and
wi ndows_en_GB. properti es respectively.

Locale resolution is typically going to be managed by the surrounding environment of the application. For the
purpose of this example though, we'll just manually specify the locale that we want to resolve our (British)

messages against.

in 'exceptions_en_GB. properties’
argunent . requi red=Ebagum | ad, the '{0}' argunment is required, | say, required.

public static void main(final String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ");
String nessage = resources. get Message("argunent.required",
new Cbject [] {"userDao"}, "Required", Locale.UK);
System out . printl n(message) ;

The resulting output from the running of the above program will be...

Ebagum | ad, the 'userDao' argument is required, | say, required.

The MessageSour ceAwar e interface can also be used to acquire a reference to any MessageSour ce that has been
defined. Any bean that is defined in an ApplicationContext that implements the MessageSour ceAvar e
interface will be injected with the application context's MessageSour ce when it (the bean) is being created and
configured.

3.8.2. Events

Event handling in the ApplicationContext is provided through the ApplicationEvent class and
Appl i cationLi st ener interface. If a bean which implements the Appl i cati onLi st ener interface is deployed
into the context, every time an Appl i cat i onEvent gets published to the Appl i cat i onCont ext , that bean will be
notified. Essentially, thisis the standard Observer design pattern. Spring provides three standard events:

Table 3.5. Built-in Events

Event Explanation

Cont ext Ref r eshedEvent
Event published when the Appl i cati onCont ext is initialized or refreshed.

Initialized here means that all beans are loaded, singletons are pre-instantiated
and the Appl i cati onCont ext iSready for use

Spring Framework (2.0) 78

The 1oC container

Event Explanation

Cont ext Cl osedEvent
Event published when the Appl i cat i onCont ext is closed, using the cl ose()

method on the Appl i cat i onCont ext . Closed here means that singleton beans
are destroyed

Request Handl edEvent
A web-specific event telling al beans that a HTTP request has been serviced

(i.e. this will be published after the request has been finished). Note that this
event is only applicable for web applications using Spring's

Di spat cher Ser vl et

Implementing custom events can be done as well. Simply call the publishEvent() method on the
Appl i cati onCont ext , specifying a parameter which is an instance of your custom event class implementing
Appl i cationEvent. Event listeners receive events synchronously. This means the publ i shEvent () method
blocks until all listeners have finished processing the event (it is possible to supply an alternate event
publishing strategy via a ApplicationEvent Mil ticaster implementation). Furthermore, when a listener
receives an event it operates inside the transaction context of the publisher, if atransaction context is available.

Let'slook at an example. First, the Appl i cat i onCont ext :

<bean id="emailer" class="exanpl e. Emai | Bean">
<property name="bl ackLi st">
<list>
<val ue>bl ack@i st . or g</ val ue>
<val ue>white@i st . or g</ val ue>
<val ue>j ohn@oe. or g</ val ue>
</list>
</ property>
</ bean>

<bean i d="bl ackLi stListener" class="exanpl e. Bl ackLi stNotifier">
<property name="notificati onAddress" val ue="spam@ist.org"/>
</ bean>

Now, let's ook at the actual classes:

public class Email Bean i npl ements Applicati onContext Aware {

private List blackList;
private ApplicationContext ctx;

public void setBlackLi st (List blackList) {
thi s. bl ackLi st = bl ackLi st ;

}

public void setApplicationContext(ApplicationContext ctx) {
this.ctx = ctx;

}

public void sendEmail (String address, String text) {
i f (blackList.contains(address)) {
Bl ackLi st Event evt = new Bl ackLi st Event (address, text);
ct x. publ i shEvent (evt);
return;

}

/1 send emuil ...

public class Bl ackListNotifier inplement ApplicationListener {

private String notificati onAddress;

Spring Framework (2.0) 79

The 1oC container

public void setNotificati onAddress(String notificati onAddress) {
this.notificationAddress = notificati onAddress;
}

public void onApplicationEvent (Applicati onEvent evt) {
if (evt instanceof Bl ackListEvent) {
/1 notify appropriate person...
}

Of course, this particular example could probably be implemented in better ways (perhaps by using AOP
features), but it should be sufficient to illustrate the basic event mechanism.

3.8.3. Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally familiarize themselves
with Spring's Resour ce abstraction, as described in the chapter entitled Chapter 4, Resources.

An application context is a Resour ceLoader , able to be used to load Resour ceS. A Resource is essentially a
java. net. URL on steroids (in fact, it just wraps and uses a URL where appropriate), which can be used to
obtain low-level resources from almost any location in a transparent fashion, including from the classpath, a
filesystem location, anywhere describable with a standard URL, and some other variations. If the resource
location string is a ssimple path without any special prefixes, where those resources come from is specific and
appropriate to the actual application context type.

A bean deployed into the application context may implement the special marker interface,
Resour celLoader Awar e, t0 be automatically called back at initialization time with the application context itself
passed in as the Resour ceLoader .

A bean may also expose properties of type Resour ce, to be used to access static resources, and expect that they
will be injected into it like any other properties. The person deploying the bean may specify those Resour ce
properties as simple String paths, and rely on a special JavaBean PropertyEditor that is automatically
registered by the context, to convert those text strings to actual Resour ce objects.

The location path or paths supplied to an Appl i cat i onCont ext constructor are actually resource strings, and in
simple form ae treated appropriately to the specific context implementation (i.e
C assPat hXn Appl i cati onCont ext treats a simple location path as a classpath location), but may also be used
with special prefixes to force loading of definitions from the classpath or a URL, regardless of the actua
context type.

3.8.4. Convenient Appl i cati onCont ext instantiation for web applications

As opposed to the BeanFact or y, which will often be created programmatically, Appl i cati onCont ext instances
can be created declaratively using for example a ContextLoader. Of course you can also create
Appl i cationCont ext instances programmatically using one of the ApplicationContext implementations.
First, let's examine the Cont ext Loader interface and its implementations.

The ContextLoader interfface has two implementations. the ContextlLoaderlListener and the
Cont ext Loader Ser vl et . They both have the same functionality but differ in that the listener version cannot be
used in Servlet 2.2 compatible containers. Since the Servlet 2.4 specification, servlet context listeners are
required to execute immediately after the serviet context for the web application has been created and is
available to service the first request (and also when the servlet context is about to be shut down): as such a
servlet context listener isan ideal place to initialize the Spring Appl i cat i onCont ext . It is up to you as to which

Spring Framework (2.0) 80

The 1oC container

one you use, but all things being equal you should probably prefer ContextLoader Li stener; for more
information on compatibility, have alook at the Javadoc for the Cont ext Loader Ser vl et .

Y ou can register an Appl i cati onCont ext USiNg the Cont ext Loader Li st ener asfollows:

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>/ WEB- | NF/ daoCont ext . xml /WEB- | NF/ appl i cati onCont ext . xml </ par am val ue>
</ cont ext - par an>

<listener>
<l i stener-class>org. springfranmewor k. web. cont ext. Cont ext Loader Li st ener</1i stener-cl ass>
</listener>

<l-- or use the ContextlLoaderServiet instead of the above |istener

<servl et >
<servl et - nane>cont ext </ servl et - nanme>
<servl et - cl ass>org. spri ngf ramewor k. web. cont ext . Cont ext Loader Ser vl et </ servl et - cl ass>
<l oad- on- st art up>1</1| oad- on- st art up>

</ servlet>

-->

The listener inspects the contextConfiglLocation parameter. If it doesn't exist, itll use
/ VEB- | NF/ appl i cati onCont ext . xni as a default. When it does exist, it'll separate the String using predefined
delimiters (comma, semi-colon and whitespace) and use the values as locations where application contexts will
be searched for. The Cont ext Loader Servl et can - as said - be used instead of the Cont ext Loader Li st ener.
The servlet will usethe cont ext Confi gLocati on' parameter just as the listener does.

3.9. Glue code and the evil singleton

The majority of the code inside an application is best written in a DI style, where that code is served out of a
Spring 10C container, has its own dependencies supplied by the container when it is created, and is completely
unaware of the container. However, for the small glue layers of code that are sometimes needed to tie other
code together, there is sometimes a need for singleton (or quasi-singleton) style access to a Spring 10C
container. For example, third party code may try to construct new objects directly (d ass. f or Name() style),
without the ability to force it to get these objects out of a Spring 1oC container. If the object constructed by the
third party codeis just asmall stub or proxy, which then uses a singleton style access to a Spring |0C container
to get area object to delegate to, then inversion of control has still been achieved for the mgjority of the code
(the object coming out of the container); thus most code is still unaware of the container or how it is accessed,
and remains uncoupled from other code, with al ensuing benefits. EJBs may also use this stub/proxy approach
to delegate to a plain Java implementation object, coming out of a Spring 10C container. While the Spring 10C
container itself ideally does not have to be a singleton, it may be unrealistic in terms of memory usage or
initialization times (when using beans in the Spring 10C container such as a Hibernate Sessi onFact ory) for
each bean to use its own, non-singleton Spring 10C container.

As another example, in a complex J2EE apps with multiple layers (i.e. various JAR files, EJBs, and WAR files
packaged as an EAR), with each layer having its own Spring 1oC container definition (effectively forming a
hierarchy), the preferred approach when there is only one web-app (WAR) in the top hierarchy is to simply
create one composite Spring 10C container from the multiple XML definition files from each layer. All of the
various Spring 1oC container implementations may be constructed from multiple definition files in this fashion.
However, if there are multiple sibling web-applications at the root of the hierarchy, it is problematic to create a
Spring 1oC container for each web-application which consists of mostly identical bean definitions from lower
layers, as there may be issues due to increased memory usage, issues with creating multiple copies of beans
which take along time to initialize (e.g. a Hibernate Sessi onFact ory), and possible issues due to side-effects.
As an alternative, classes such as Cont ext Si ngl et onBeanFact or yLocat or Or Si ngl et onBeanFact or yLocat or
may be used to demand-load multiple hierarchical (i.e. one is a parent of another) Spring 10C container
instances in an effectively singleton fashion, which may then be used as the parents of the web-application

Spring Framework (2.0) 81

http://www.springframework.org/docs/api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html
http://www.springframework.org/docs/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html

The 1oC container

Spring 10C container instances. The result is that bean definitions for lower layers are loaded only as needed,
and loaded only once.

3.9.1. Using the Singleton-helper classes

You can see a detailed example of their usage in SingletonBeanFactoryl ocator and
ContextSingletonBeanFactoryL ocator by viewing their respective Javadocs.

As mentioned in the chapter on EJBs, the Spring convenience base classes for EJBs normally use a
non-singleton BeanFactoryLocator implementation, which is easily replaced by the use of
Si ngl et onBeanFact or yLocat or and Cont ext Si ngl et onBeanFact or yLocat or if thereisaneed.

Spring Framework (2.0) 82

http://www.springframework.org/docs/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html
http://www.springframework.org/docs/api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html

Chapter 4. Resources

4.1. Introduction

Javas standard j ava. net . URL interface and standard handlers for various URL prefixes are unfortunately not
quite adequate enough for all access to low-level resources. For example, there is no standardized URL
implementation which may be used to access a resource that needs to be obtained from somewhere on the
classpath, or relative to a Ser vl et Cont ext . While it is possible to register new handlers for specialized URL
prefixes (similar to existing handlers for prefixes such as ht t p:), thisis generally quite complicated, and the
URL interface till lacks some desirable functionality, such as a method to check for the existence of the
resource being pointed to.

4.2. The Resour ce interface

Spring's Resour ce interface is meant to be a more capable interface for abstracting access to low-level
resources.
public interface Resource extends |nputStreanSource {
bool ean exists();
bool ean i sOpen();
URL get URL() throws | OException;
File getFile() throws | OException;
Resource createRel ative(String rel ativePath) throws | OException;
String getFil enanme();

String getDescription();

public interface |nputStreanSource {

| nput St ream get | nput Strean{) throws | OExcepti on;

Some of the most important methods from the Resour ce interface are:

e getlnputStrean(): locates and opens the resource, returning an I nput Stream for reading from said
resource. It is expected that each invocation returns afresh I nput St ream It is the responsibility of the caller
to close the stream.

* exists(): returnsabool ean indicating whether this resource actually existsin physical form.

e isQpen(): returns a bool ean indicating whether this resource represents a handle with an open stream. If
true, the I nput St r eam cannot be read multiple times, and must be read once only and then closed to avoid
resource leaks. Will be false for al usual resource implementations, with the exception of
I nput St r eanmResour ce.

e get Description(): returns adescription for this resource, to be used for error output when working with the
resource. Thisis often the fully qualified file name or the actual URL of the resource.

Spring Framework (2.0) 83

Resources

Other methods allow you to obtain an actual URL or Fi | e object representing the resource (if the underlying
implementation is compatible, and supports that functionality).

The Resour ce abstraction is used extensively in Spring itself, as an argument type in many method signatures
when a resource is needed. Other methods in some Spring APIs (such as the constructors to various
Appl i cati onCont ext implementations), take a st ri ng which in unadorned or simple form is used to create a
Resour ce appropriate to that context implementation, or via special prefixes on the string path, alow the
caller to specify that a specific Resour ce implementation must be created and used.

While the Resource interface is used a lot with Spring and by Spring, it's actually very useful to use as a
genera utility class by itself in your own code, for access to resources, even when your code doesn't know or
care about any other parts of Spring. While this couples your code to Spring, it really only couples it to this
small set of utility classes, which are serving as a more capable replacement for URL, and can be considered
equivalent to any other library you would use for this purpose.

It is important to note that the Resour ce abstraction does not replace functionality: it wraps it where possible.
For example, aur | Resour ce wrapsa URL, and uses the wrapped URL to do it's work.

4.3. Built-in Resour ce implementations

There are anumber of Resour ce implementations that come supplied straight out of the box in Spring:

4.3.1. Ur| Resource

The ur I Resour ce Wrapsaj ava. net . URL, and may be used to access any object that is normally accessible viaa
URL, such asfiles, an HTTP target, an FTP target, etc. All URLs have a standardized st ri ng representation,
such that appropriate standardized prefixes are used to indicate one URL type from another. This includes
file: for accessing filesystem paths, htt p: for accessing resources viathe HTTP protocol, ft p: for accessing
resourcesviaFTP, etc.

A Ul Resour ce is created by Java code explicitly using the Ur | Resour ce constructor, but will often be created
implicitly when you call an APl method which takes a st ri ng argument which is meant to represent a path. For
the latter case, a JavaBeans Propert yEdi t or Will ultimately decide which type of Resource to create. If the
path string contains a few well-known (to it, that is) prefixes such as cl asspat h: , it will create an appropriate
specialized Resour ce for that prefix. However, if it doesn't recognize the prefix, it will assume the thisisjust a
standard URL string, and will create a Ur | Resour ce.

4.3.2. d assPat hResour ce

This class represents a resource which should be obtained from the classpath. This uses either the thread
context class loader, a given class loader, or a given class for loading resources.

This Resour ce implementation supports resolution asj ava. i o. Fi | e if the class path resource resides in the file
system, but not for classpath resources which reside in ajar and have not been expanded (by the servlet engine,
or whatever the environment is) to the filesystem. To address this the various Resour ce implementations
always support resolution asaj ava. net . URL.

A O assPat hResour ce is created by Java code explicitly using the d assPat hResour ce constructor, but will
often be created implicitly when you call an APl method which takes a st ri ng argument which is meant to
represent a path. For the latter case, a JavaBeans PropertyEditor Will recognize the special prefix
cl asspat h: on the string path, and create ad assPat hResour ce in that case.

Spring Framework (2.0) 84

Resources

4.3.3. Fi | eSyst enmResour ce

Thisis a Resour ce implementation for j ava. i o. Fi | e handles. It obviously supports resolution as aFi | e, and
asaURL.

4.3.4. Servl et Cont ext Resour ce

This is a Resource implementation for Servl et Cont ext resources, interpreting relative paths within the
relevant web application's root directory.

This always supports stream access and URL access, but only alows java.io. Fil e access when the web
application archive is expanded and the resource is physically on the filesystem. Whether or not it's expanded
and on the filesystem like this, or accessed directly from the JAR or somewhere else like a DB (it's
conceivable) is actually dependent on the Servlet container.

4.3.5. | nput St r eanResour ce

A Resource implementation for a given I nput Stream This should only be used if no specific Resource
implementation is applicable. In particular, prefer Byt eArrayResource or any of the file-based Resource
implementations where possible.

In contrast to other Resour ce implementations, this is a descriptor for an already opened resource - therefore
returning t rue from i sgpen() . Do not use it if you need to keep the resource descriptor somewhere, or if you
need to read a stream multiple times.

4.3.6. Byt eArr ayResour ce

This is a Resour ce implementation for a given byte array. It creates a Byt eArrayl nput St ream for the given
byte array.

It's useful for loading content from any given byte array, without having to resort to a single-use
I nput St r eanResour ce.

4.4. The Resour ceLoader

The Resour ceLoader interface is meant to be implemented by objects that can return (i.e. load) Resource
instances.

public interface ResourcelLoader {
Resource get Resource(String | ocation);
}

All application contexts implement the Resour ceLoader interface, and therefore all application contexts may be
used to obtain Resour ce instances.

When you call get Resour ce() on a specific application context, and the location path specified doesn't have a
specific prefix, you will get back a Resour ce type that is appropriate to that particular application context. For
example, assume the following snippet of code was executed against a d assPat hXni Appl i cati onCont ext

instance:

Resource tenpl ate = ctx. get Resource("sone/resource/ path/ nyTenpl ate. txt);

Spring Framework (2.0) 85

Resources

What would be returned would be a d assPat hResource; if the same method was executed against a
Fi | eSystenXni Appl i cationContext instance, youd get back a FileSystenResource. For a
WebAppl i cat i onCont ext , you'd get back a Ser vi et Cont ext Resour ce, and SO On.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force d assPat hResour ce to be used, regardless of the application context
type, by specifying the specia cl asspat h: prefix:

Resource tenpl ate = ctx. get Resource("cl asspat h: sone/ r esour ce/ pat h/ nyTenpl ate. t xt);

Similarly, one can force aur | Resour ce to be used by specifying any of the standard j ava. net . URL prefixes:

Resource tenplate = ctx.getResource("file:/sone/resource/path/ nyTenpl ate. txt);

Resource tenpl ate = ctx. get Resource("http://nyhost.coniresource/path/nyTenpl ate. txt);

The following table summarizes the strategy for converting St ri ngSto Resour ceS:

Table4.1. Resour ce strings

Prefix Example Explanation
classpath: cl asspat h: coni nyapp/ confi g. xm Loaded from the classpath.
file: file:/datal/config.xm Loaded as a URL, from the
filesystem. 2
http: http:// nyserver/| ogo. png Loaded asa URL.
(none) / dat a/ confi g. xn Depends on the underlying

Appl i cati onCont ext .

8But see also the section entitled Section 4.7.3, “Fi | eSyst enResour ce caveats’.

4.5. The Resour ceLoader Awnar e interface

The Resour ceLoader Avar e interface is a special marker interface, identifying objects that expect to be provided
with aResour ceLoader reference.

public interface ResourcelLoader Anare {
voi d set Resour ceLoader (Resour ceLoader resourceloader);
}

When a class implements ResourcelLoader Aware and is deployed into an application context (as a
Spring-managed bean), it is recognized as Resour ceLoader Awar e by the application context. The application
context will then invoke the set Resourceloader (ResourceLoader), supplying itself as the argument
(remember, al application contextsin Spring implement the Resour ceLoader interface).

Of course, since an ApplicationContext iS a Resourceloader, the bean could aso implement the

Spring Framework (2.0) 86

Resources

Appl i cat i onCont ext Awar e interface and use the supplied application context directly to load resources, but in
generd, it's better to use the specialized Resour ceLoader interface if that's all that's needed. The code would
just be coupled to the resource loading interface, which can be considered a utility interface, and not the whole
Spring Appl i cat i onCont ext interface.

4.6. Setting Resour ceS as properties

If the bean itself is going to determine and supply the resource path through some sort of dynamic process, it
probably makes sense for the bean to use the Resour ceLoader interface to load resources. Consider as an
example the loading of atemplate of some sort, where the specific resource that is needed depends on the role
of the user. If the resources are static, it makes sense to eliminate the use of the Resour ceLoader interface
completely, and just have the bean expose the Resource properties it needs, and expect that they will be
injected into it.

What makes it trivial to then inject these properties, is that all application contexts register and use a specia
JavaBeans Propert yEdi t or Which can convert st ri ng paths to Resour ce objects. So if nyBean has a template
property of type Resour ce, it can be configured with a simple string for that resource, as follows:

bean i d="nyBean" class="...">
<property name="tenpl ate" val ue="sone/resource/ path/ myTenpl ate.txt"/>
</ bean>

Note that the resource path has no prefix, so because the application context itself is going to be used as the
Resour ceLoader, the resource itself will be loaded via a O assPathResource, FileSystenResource,
Ser vl et Cont ext Resour ce, €tC. as appropriate depending on the type of the context.

If there is a need to force a specific Resour ce type to be used, then a prefix may be used. The following two
examples show how to force a d assPat hResource and a Url Resource (the latter being used to access a
filesystem file).

<property name="tenpl ate" val ue="cl asspat h: sone/ resour ce/ pat h/ nyTenpl ate. t xt">

<property name="tenpl ate" val ue="file:/sonme/resource/path/ nyTenpl ate. txt"/>

4.7. Application contexts and Resour ce paths

4.7.1. Constructing application contexts

An application context constructor (for a specific application context type) generally takes a string or array of
strings as the location path(s) of the resource(s) such as XML files that make up the definition of the context.

When such a location path doesn't have a prefix, the specific Resour ce type built from that path and used to
load the bean definitions, depends on and is appropriate to the specific application context. For example, if you
create ad assPat hxm Appl i cati onCont ext asfollows:

Appl i cationContext ctx = new C assPat hXml Appli cati onCont ext ("conf/appContext.xm ");
The bean definitions will be loaded from the classpath, as a d assPat hResour ce will be used. But if you create
aFi | eSyst enXm Appl i cati onCont ext asfollows:

Appl i cationContext ctx =

Spring Framework (2.0) 87

Resources

new Fi | eSyst enCl assPat hXm Appl i cat i onCont ext (" conf/appCont ext . xm ");

The bean definition will be loaded from a filesystem location, in this case relative to the current working
directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location path will override the
default type of Resour ce created to load the definition. So thisFi | eSyst enXm Appl i cat i onCont ext ...

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext (" cl asspat h: conf/ appCont ext . xm ") ;

will actualy load it's bean definitions from the classpath. However, it is dtll a
Fi | eSyst enXni Appl i cati onCont ext . If it is subsequently used as a Resour ceLoader , any unprefixed paths will
till be treated as filesystem paths.

4.7.1.1. Constructing d assPat hxm Appl i cati onCont ext instances - shortcuts

The d assPat hxm Appl i cati onCont ext exposes a humber of constructors to enable convenient instantiation.
The basic idea is that one supplies merely a string array containing just the filenames of the XML files
themselves (without the leading path information), and one also supplies a dass; the
C assPat hxm Appl i cat i onCont ext Will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:

conl
f oo/
servi ces. xm
daos. xm
Messenger Ser vi ce. cl ass

A O assPat hxnl Appl i cati onCont ext instance composed of the beans defined in the ' services. xm* and
" daos. xm * could be instantiated like so...

Appl i cationContext ctx = new C assPat hXnl Appli cati onCont ext (
new String[] {"services.xm", "daos.xm "}, Messenger Service. cl ass);

Please do consult the Javadocs for the d assPat hxml Appl i cati onCont ext class for details of the various
constructors.

4.7.2. Wildcards in application context constructor resource paths

The resource paths in application context constructor values may be a simple path (as shown above) which has
a one-to-one mapping to a target Resource, or alternately may contain the specia "classpath*:" prefix and/or
internal Ant-style regular expressions (matched using Spring's Pat hvat cher utility). Both of the latter are
effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components can "publish’
context definition fragments to a well-known location path, and when the final application context is created
using the same path prefixed viacl asspat h*: , al component fragments will be picked up automatically.

Note that this wildcarding is specific to use of resource paths in application context constructors (or when using
the Pat hmvat cher utility class hierarchy directly), and is resolved at construction time. It has nothing to do with
the Resour ce type itself. It's not possible to use the cl asspat h*: prefix to construct an actual Resource, as a

Spring Framework (2.0) 88

Resources

resource points to just one resource at atime.

4.7.2.1. Ant-style Patterns

When the path location contains an Ant-style pattern, e.g. ...

/ VEB- | NF/ *- cont ext . xmi

coni nyconpany/ **/ appl i cati onCont ext . xm
file:C/sonme/path/*-context.xmn

cl asspat h: conf myconpany/ **/ appl i cati onCont ext . xmi

... the resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces a
Resource for the path up to the last non-wildcard segment and obtains a URL from it. If this URL isnot a"jar:"
URL or container-specific variant (eg. "zip:" in WebLogic, "wsjar" in WebSphere", etc.), then a
java.io. File isobtained from it, and used to resolve the wildcard by walking the filesystem. In the case of a
jar URL, the resolver either gets aj ava. net. Jar URLConnect i on from it, or manually parse the jar URL, and
then traverse the contents of the jar file, to resolve the wildcards.

4.7.2.1.1. Implications on portability

If the specified path is aready afile URL (either explicitly, or implicitly because the base Resourcel oader is a
filesystem one, then wildcarding is guaranteed to work in a completely poratable fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path segment
URL viaad assl oader . get Resour ce() call. Since thisis just a node of the path (not the file at the end) it is
actually undefined (in the d assLoader Javadocs) exactly what sort of a URL is returned in this case. In
practice, it is always a j ava. i o. Fi |l e representing the directory, where the classpath resource resolves to a
filesystem location, or a jar URL of some sort, where the classpath resource resolves to a jar location. Still,
there is a portability concern on this operation.

If a jaa URL is obtained for the last non-wildcard segment, the resolver must be able to get a
j ava. net . Jar URLConnect i on from it, or manually parse the jar URL, to be able to walk the contents of the jar,
and resolve the wildcard. This will work in most environments, but will fail in others, and it is strongly
recommended that the wildcard resolution of resources coming from jars be thoroughly tested in your specific
environment before you rely on it.

4.7.2.2. The cl asspat h*: prefix

When constructing an XML-based application context, a location string may use the special cl asspat h*:
prefix:

Appl i cationContext ctx =
new Cl assPat hXm Appl i cati onCont ext (" cl asspat h*: conf/ appCont ext. xm ") ;

This special prefix specifies that all classpath resources that match the given name must be obtained (internally,
this essentialy happens via a d assLoader . get Resources(...) cal), and then merged to form the fina
application context definition.

Classpath*: portability

e
The wildcard classpath relies on the get Resour ces() method of the underlying classloader. As
most application servers nowadays supply their own classloader implementation, the behavior
might differ especially when dealing with jar files. A simple test to check if cl asspat h* worksisto
use the clasdoader to load a file from within a jar on the classpath:

Spring Framework (2.0) 89

Resources

get d ass() . get O assLoader () . get Resour ces(" <someFi | el nsi deTheJar>"). Try this test with
files that have the same name but are placed inside two different locations. In case an inappropriate
result is returned, check the application server documentation for settings that might affect the
classloader behavior.

The"cl asspat h*: " prefix can aso be combined with a Pat hivat cher pattern in the rest of the location path, for
example "cl asspat h*: META- I NF/ *-beans. xm ". In this case, the resolution strategy is fairly smple: a
ClassL oader.getResources() call is used on the last non-wildcard path segment to get all the matching resources
in the class loader hierarchy, and then off each resource the same PathMatcher resoltion strategy described
aboveis used for the wildcard subpath.

4.7.2.3. Other notes relating to wildcards

Please note that "cl asspat h*: " when combined with Ant-style patterns will only work reliably with at least
one root directory before the pattern starts, unless the actual target files reside in the file system. This means
that a pattern like "cl asspat h*: *. xni " will not retrieve files from the root of jar files but rather only from the
root of expanded directories. This originates from a limitation in the JDK's d assLoader . get Resour ces()
method which only returns file system locations for a passed-in empty String (indicating potentia roots to
search).

Ant-style patterns with "cl asspat h: " resources are not guaranteed to find matching resources if the root
package to search is available in multiple class path locations. Thisis because a resource such as

com nyconpany/ packagel/ servi ce- cont ext . xm

may be in only one location, but when a path such as

cl asspat h: conf myconpany/ **/ servi ce- cont ext . xmi

is used to try to resolve it, the resolver will work off the (first) URL returned by
get Resour ce(" cont myconpany") ;. If this base package node exists in multiple classloader locations, the actual
end resource may not be underneath. Therefore, preferably, use "cl asspat h*: " with the same Ant-style pattern
in such a case, which will search al class path locations that contain the root package.

4.7.3. Fi | eSyst enResour ce caveats

A FileSystenResource that is not attached to a FileSystemApplicationContext (that is, a
Fi | eSyst emAppl i cati onCont ext iSnot the actual Resour ceLoader) will treat absolute vs. relative paths as you
would expect. Relative paths are relative to the current working directory, while absolute paths are relative to
theroot of the filesystem.

For backwards compatibility (historical) reasons however, this changes when the
Fi | eSyst emAppl i cati onCont ext iSthe Resour ceLoader. The Fi | eSyst emAppl i cati onCont ext Simply forces
all attached Fi | eSyst enResour ce instances to treat all location paths as relative, whether they start with a
leading slash or not. In practice, this means the following are equivalent:

Appl i cationContext ctx =
new Fi | eSyst enCl assPat hXml Appl i cati onCont ext ("conf/context.xm");

Appl i cationContext ctx =
new Fi | eSyst enCl assPat hXnl Appl i cati onCont ext ("/conf/context.xm");

Spring Framework (2.0) 90

Resources

As are the following: (Even though it would make sense for them to be different, as one case is relative and the
other absolute.)

Fi | eSyst enXml Appl i cati onContext ctx = ...;
ct x. get Resour ce("sone/ resour ce/ path/ nyTenpl ate. txt");

Fi | eSyst enXml Appl i cati onContext ctx = ...;
ct x. get Resour ce("/ sone/ resource/ pat h/ nyTenpl ate. txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths with
Fi | eSyst enResour ce / Fi | eSyst emXni Appl i cati onCont ext , and just force the use of a Ur| Resour ce, by using
thefile: URL prefix.

/] actual context type doesn't matter, the Resource will always be Url Resource
ct x. get Resource("fil e:/sonme/resource/ path/ nyTenpl ate. txt");

/'l force this FileSystemXm ApplicationContext to load it's definition via a Ul Resource
Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onContext ("file:/conf/context.xm");

Spring Framework (2.0) 91

Chapter 5. Validation, Data-binding, the Beanw apper,
and PropertyEditors

5.1. Introduction

There are pros and cons for considering validation as business logic, and Spring offers a design for validation
(and data binding) that does not exclude either one of them. Specifically validation should not be tied to the
web tier, should be easy to localize and it should be possible to plug in any validator available. Considering the
above, Spring has come up with aval i dat or interface that is both basic and eminently usable in every layer of
an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of an application
(or whatever objects you use to process user input). Spring provides the so-called Dat aBi nder to do exactly
that. The val i dat or and the Dat aBi nder make up the val i dat i on package, which is primarily used in but not
limited to the MV C framework.

The Beanw apper is a fundamental concept in the Spring Framework and is used in a lot of places. However,
you probably will not ever have the need to use the Beanw apper directly. Because this is reference
documentation however, we felt that some explanation might be right. We're explaining the Beanw apper in
this chapter since if you were going to use it at all, you would probably do that when trying to bind data to
objects, which is strongly related to the Beanw apper .

Spring uses PropertyEditors all over the place. The concept of a PropertyEditor is part of the JavaBeans
specification. Just as the Beanw apper, it's best to explain the use of PropertyEditors in this chapter as well,
sinceit's closely related to the Beanw apper and the Dat aBi nder .

5.2. Validation using Spring's Vval i dat or interface

Spring's features a val i dat or interface that you can use to validate objects. The val i dat or interface works
using an Error s object so that while validating, validators can report validation failures to the Er r or s abject.

Let's consider a small data object:

public class Person {

private String nane;
private int age;

// the usual getters and setters...

}

We're going to provide validation behavior for the Per son class by implementing the following two methods of
theorg. spri ngf ramewor k. val i dati on. Val i dat or interface:

e supports(d ass) - Canthisval i dat or validate instances of the supplied c ass?
e validate(bject, org.springfranmework.validation.Errors) - validates the given object and in case of
validation errors, registers those with the given r r or s object

Implementing a val i dat or isfairly straightforward, especially when you know of the val i dati onUti | s helper
class that the Spring Framework also provides.

Spring Framework (2.0) 92

Validation, Data-binding, the Beanw apper , and

public class PersonValidator inplenents Validator {

/**
* This validator validates just Person i nstances
*/
publ i ¢ bool ean supports(d ass clazz) {
return Person. cl ass. equal s(cl azz);
}

public void validate(Cbject obj, Errors e) {
ValidationUils.rejectlfEmpty(e, "nanme", "name.enpty");
Person p = (Person) obj;
if (p.getAge() < 0) {

e.rejectVal ue("age", "negativeval ue");
} else if (p.getAge() > 110) {
e.rejectVal ue("age", "too.darn.old");

}

As you can see, the static reject!fEnpty(..) method on the validationUtils classis used to rgect the
"name' property if itisnul | or the empty string. Have alook at the Javadoc for the val i dationUtils classto
see what functionality it provides besides the example shown previoudly.

While it is certainly possible to implement a single val i dat or class to validate each of the nested objectsin a
rich object, it may be better to encapsulate the validation logic for each nested class of object in its own
val i dat or implementation. A simple example of a 'rich' object would be a cust orer that is composed of two
String properties (a first and second name) and a complex Address object. Address objects may be used
independant of cust omer objects, and so a distinct Addr essVal i dat or has been implemented. If you want your
Cust orer Val i dat or t0 reuse the logic contained within the Addressvalidator class without recourse to
copy-n-paste you can dependency-inject or instantiate an Addr essVal i dat or within your Cust orer val i dat or,
and useit like so:
public class CustonerValidator inplenments Validator {
private final Validator addressValidator;
public UserValidator(Validator addressValidator) {
i f (addressValidator == null) {
throw new |11 egal Argunent Excepti on("The supplied [Validator] is required and nmust not be null.");
i f (!addressValidator. supports(Address.class)) {

throw new ||| egal Argument Excepti on(
"The supplied [Validator] must support the validation of [Address] instances.");

}
thi s. addressVal i dator = addressVal i dator;
}
/**
* This validator validates customer instances, and any subcl asses of custoner too0
*/

publ i c bool ean supports(d ass clazz) {
return Custoner.cl ass.isAssi gnabl eFron{cl azz);
}

public void validate(Cbject target, Errors errors) {
ValidationUils.rejectlfEnmptyO Witespace(errors, "firstName", "field.required");
ValidationUils.rejectlfEnmptyO Witespace(errors, "surname", "field.required");
Cust omer customer = (Custoner) target;
try {
errors. pushNest edPat h("addr ess") ;
Val i dationUils.invokeValidator(this.addressValidator, custoner.getAddress(), errors);
} finally {
errors. popNest edPat h();
}

Spring Framework (2.0) 93

PropertyEditors

Validation errors are reported to the Er r or s object passed to the validator. In case of Spring Web MV C you can
use <spri ng: bi nd/ > tag to inspect the error messages, but of course you can also inspect the errors object
yourself. More information about the methods it offers can be found from the Javadoc.

5.3. Resolving codes to error messages

We've talked about databinding and validation. Outputting messages corresponding to validation errors is the
last thing we need to discuss. In the example we've shown above, we rejected the nane and the age field. If
we're going to output the error messages by using a MessageSour ce, we Will do so using the error code we've
given when regjecting the field (‘'name’ and 'age’ in this case). When you call (either directly, or indirectly, using
for example the val i dationUtils class) reject Val ue or one of the other rej ect methods from the Errors
interface, the underlying implementation will not only register the code you've passed in, but also a number of
additional error codes. What error codes it registers is determined by the MessageCodesResol ver that is used.
By default, the Def aul t MessageCodesResol ver is used, which for example not only registers a message with
the code you gave, but also messages that include the field name you passed to the reject method. So in case
you reject a field using rej ect val ue("age", “"too.darn.old"), apart from the t oo. darn. ol d code, Spring
will also register t oo. darn. ol d. age and t oo. dar n. ol d. age. i nt (0 the first will include the field name and
the second will include the type of the field); this is done as a convenience to aid developers in targeting error
messages and suchlike.

More information on the MessageCodesResol ver and the default strategy can be found online with the
Javadocs for M essageCodesResolver and DefaultM essageCodesResolver respectively.

5.4. Bean manipulation and the BeanWw apper

The or g. spri ngf ramewor k. beans package adheres to the JavaBeans standard provided by Sun. A JavaBean is
simply a class with a default no-argument constructor, which follows a naming conventions where a property
named bi ngoMadness has a setter set Bi ngoMadness(..) and a getter get Bi ngoMadness(). For more
infformation about JavaBeans and the specification, please refer to Sun's website
(java.sun.com/products/javabeans).

One quite important concept of the beans package is the Beanw apper interface and its corresponding
implementation (Beanw apper | npl). As quoted from the Javadoc, the Beanw apper offers functionality to set
and get property values (individualy or in bulk), get property descriptors, and to query properties to determine
if they are readable or writable. Also, the Beanw apper offers support for nested properties, enabling the setting
of properties on sub-properties to an unlimited depth. Then, the Beanw apper supports the ability to add
standard JavaBeans PropertyChangelisteners and Vetoabl eChangeLi steners, without the need for
supporting code in the target class. Last but not least, the Beanw apper provides support for the setting of
indexed properties. The Beanw apper usually isn't used by application code directly, but by the Dat aBi nder and
the BeanFact ory.

The way the Beanw apper works is partly indicated by its name: it wraps a bean to perform actions on that
bean, like setting and retrieving properties.

5.4.1. Setting and getting basic and nested properties

Setting and getting properties is done using the set Pr oper t yval ue(s) and get Propert yVval ue(s) methods that
both come with a couple of overloaded variants. They're al described in more detail in the Javadoc Spring
comes with. What's important to know is that there are a couple of conventions for indicating properties of an
object. A couple of examples:

Spring Framework (2.0) 94

http://www.springframework.org/docs/api/org/springframework/validation/MessageCodesResolver.html
http://www.springframework.org/docs/api/org/springframework/validation/DefaultMessageCodesResolver.html
http://java.sun.com/products/javabeans/

Validation, Data-binding, the Beanw apper , and

Table 5.1. Examples of properties

Expression Explanation

name Indicates the property name corresponding to the methods get Nane() Of i sNane()
and set Narre()

account . nane Indicates the nested property nane of the property account corresponding e.g. to
the methods get Account () . set Nane() Or get Account (). get Narre()

account [2] Indicates the third element of the indexed property account . Indexed properties
can be of typearray, | i st or other naturally ordered collection

account [COVPANYNAVE] Indicates the value of the map entry indexed by the key COMPANYNAME of the
Map property account

Below you'll find some examples of working with the Beanw apper to get and set properties.

(This next section is not vitally important to you if you're not planning to work with the Beanw apper directly. If
you're just using the Dat aBi nder and the BeanFact ory and their out-of-the-box implementation, you should
skip ahead to the section about Pr oper t yEdi t or s.)

Consider the following two classes:

public class Conpany {
private String nane;
private Enpl oyee managi ngDirector;

public String getName() {
return this.nane;

public void setNane(String nane) {
thi s. name = nang;

publ i c Enpl oyee get Managi ngbhirector () {
return this. managi ngDirector;

public void setManagi ngDirect or (Enpl oyee managi ngDi rector) {
t hi s. managi ngDi rect or = managi ngDi rect or;

}

public class Enpl oyee {
private float salary;

public float getSalary() {
return sal ary;

public void setSalary(float salary) {
this.salary = sal ary;
}

The following code snippets show some examples of how to retrieve and manipulate some of the properties of
instantiated Conpani es and Enpl oyees:

BeanW apper conpany = BeanW apper | npl (new Conpany());
/'l setting the conpany nane..

conpany. set PropertyVal ue("nanme", "Sone Conpany Inc.");
// ... can also be done like this:
PropertyVal ue val ue = new PropertyVal ue("nane", "Sone Conpany Inc.");

conpany. set Propert yVal ue(val ue);

/1 ok, let's create the director and tie it to the conpany:

Spring Framework (2.0) 95

PropertyEditors

BeanW apper jim = BeanW apper | npl (new Enpl oyee());
jimsetPropertyVal ue("nane", "Jim Stravi nsky");
conpany. set PropertyVal ue(" managi ngDirector”, jim get Wappedl nstance());

/'l retrieving the salary of the managi ngDirector through the conpany
Fl oat salary = (Float) conpany.getPropertyVal ue("managi ngDirector.salary");

5.4.2. Built-in PropertyEditor implementations

Spring heavily uses the concept of PropertyEditors. Sometimes it might be handy to be able to represent
properties in a different way than the object itself. For example, a date can be represented in a human readable
way, while we're still able to convert the human readable form back to the original date (or even better: convert
any date entered in a human readable form, back to Dat e objects). This behavior can be achieved by registering
custom editors, of type java. beans. PropertyEditor. Registering custom editors on a BeanW apper Of
aternately in a specific 10C container as mentioned in the previous chapter, gives it the knowledge of how to
convert properties to the desired type. Read more about PropertyEditors in the Javadoc of the j ava. beans
package provided by Sun.

A couple of examples where property editing is used in Spring

 setting properties on beans is done using Propert yEdi t ors. When mentioning j ava. | ang. String as the
value of a property of some bean you're declaring in XML file, Spring will (if the setter of the corresponding
property has ad ass-parameter) use the d assEdi t or to try to resolve the parameter to ac ass object

e parsing HTTP request parameters in Spring's MV C framework is done using all kinds of PropertyEditors
that you can manually bind in al subclasses of the CommandControl | er

Spring has a number of built-in Propert yEdi t or s to make life easy. Each of those is listed below and they are
al located in the org. springfranmewor k. beans. propertyedi tors package. Most, but not al (as indicated
below), are registered by default by Beanw apper I npl . Where the property editor is configurable in some
fashion, you can of course still register your own variant to override the default one:

Table5.2. Built-in propertyEditors

Class Explanation

Byt eAr rayPropert yEdi t or Editor for byte arrays. Strings will smply be converted to their
corresponding byte representations. Registered by default by
BeanW apper | npl .

C assEdi tor Parses Strings representing classes to actual classes and the other
way aound. When a class is not found, an
I'll egal Argunent Exception is thrown. Registered by default by
BeanW apper | npl .

Cust onBool eanEdi t or Customizable property editor for Bool ean properties. Registered by
default by Beanw apper I npl , but, can be overridden by registering
custom instance of it as custom editor.

Cust onCol | ect i onEdi t or Property editor for Collections, converting any source Col | ecti on
to agiven target Col | ecti on type.

Cust onDat eEdi t or Customizable property editor for javautil.Date, supporting a
custom DateFormat. NOT registered by default. Must be user
registered as needed with appropriate format.

Cust omNunber Edi t or Customizable property editor for any Number subclass like

Spring Framework (2.0) 96

Validation, Data-binding, the Beanw apper , and

Class Explanation

Integer, Long, Float, Double. Registered by default by
BeanW apper I npl , but can be overridden by registering custom
instance of it as a custom editor.

Fi | eEdi t or Capable of resolving Strings to j ava. i o. Fi | e objects. Registered
by default by Beanw apper I npl .

| nput St r eanEdi t or One-way property editor, capable of taking a text string and
producing (via an intermediate Resour ceEdi t or and Resour ce) an
I nput Stream SO | nput St ream properties may be directly set as
Strings. Note that the default usage will not close the I nput St r eam
for you! Registered by default by Beanw apper | mpl .

Local eEdi t or Capable of resolving Strings to Local e objects and vice versa (the
String format is [language] _[country] [variant], which is the same
thing the toString() method of Locale provides). Registered by
default by Beanw apper I npl .

PropertiesEditor Capable of converting Strings (formatted using the format as
defined in the Javadoc for the javalang.Properties class) to
Properti es oObjects. Registered by default by Beanw apper I npl .

StringArrayPropertyEditor Capable of resolving a comma-delimited list of String to a
String-array and vice versa.

StringTri mrer Edi t or Property editor that trims Strings. Optionally allows transforming
an empty string into anul | value. NOT registered by default; must
be user registered as needed.

URLEdi t or Capable of resolving a String representation of a URL to an actual

URL object. Registered by default by Beanw apper I npl .

Spring uses the j ava. beans. Propert yEdi t or Manager t0 set the search path for property editors that might be
needed. The search path aso includes sun. bean. edi t or s, which includes PropertyEdi t or implementations
for types such as Font, Col or, and most of the primitive types. Note also that the standard JavaBeans
infrastructure will automatically discover propertyEditor classes (without you having to register them
explicitly) if they are in the same package as the class they handle, and have the same name as that class, with
"Editor' appended; for example, one could have the following class and package structure, which would be
sufficient for the FooEdi t or classto be recognized and used as the Pr oper t yEdi t or for Foo-typed properties.

com
chank

pop
Foo
FooEdi t or /'l the pPropertyEditor for the Foo cl ass

Note that you can also use the standard Beanlnfo JavaBeans mechanism here as well (described in
not-amazing-detail here). Find below an example of using the Beanl nf o mechanism for explicitly registering
one or more Pr oper t yEdi t or instances with the properties of an associated class.

com
chank
pop
Foo
FooBeanl nf o /! the Beaninfo for the Foo cl ass

Spring Framework (2.0) 97

http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html
http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html

PropertyEditors

Here is the Java source code for the referenced FooBeanlinfo class. This would associate a
Cust om\unber Edi t or With the age property of the Foo class.

public class FooBeanl nfo extends SinpleBeanlnfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {

final PropertyEditor nunmber PE = new Cust onmNunber Edi t or (| nt eger. cl ass, true);

PropertyDescri ptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {
public PropertyEditor createPropertyEditor(Cbject bean) {

return nunber PE;

b

b

return new PropertyDescriptor[] { ageDescriptor };

catch (IntrospectionException ex) {
throw new Error(ex.toString());
}

5.4.2.1. Registering additional custom PropertyEdi tors

When setting bean properties as a string value, a Spring 10C container ultimately uses standard JavaBeans
Proper t yEdi t or s to convert these Strings to the complex type of the property. Spring pre-registers a number of
custom Proper t yEdi t or s (for example, to convert a classname expressed as a string into areal d ass object).
Additionally, Java's standard JavaBeans Pr opert yEdi t or l0ookup mechanism allows a Propert yEdi tor for a
class simply to be named appropriately and placed in the same package as the class it provides support for, to
be found automatically.

If there is a need to register other custom proper t yEdi t or s, there are several mechanisms available. The most
manual approach, which is not normally convenient or recommended, is to simply use the
regi sterCustonkEditor () method of the Configurabl eBeanFactory interface, assuming you have a
BeanFact ory reference. The more convenient mechanism is to use a special bean factory post-processor called
Cust onEdi t or Confi gurer. Although bean factory post-processors can be used semi-manualy with
BeanFact ory implementations, this one has a nested property setup, so it is strongly recommended that it is
used with the Appli cationCont ext, where it may be deployed in similar fashion to any other bean, and
automatically detected and applied.

Note that al bean factories and application contexts automatically use a number of built-in property editors,
through their use of something called a Beanw apper to handle property conversions. The standard property
editors that the Beanw apper registers are listed in the previous section. Additionally, Appl i cati onCont exts
also override or add an additional number of editors to handle resource lookups in a manner appropriate to the
specific application context type.

Standard JavaBeans Propert yEdi t or instances are used to convert property values expressed as strings to the
actual complex type of the property. Cust onEdi t or Conf i gur er, a bean factory post-processor, may be used to
conveniently add support for additional Propert yEdi t or instancesto an Appl i cat i onCont ext .

Consider a user class Exot i cType, and another class DependsOnExot i cType Which needs Exoti cType set as a
property:
package exanpl e;
public class ExoticType {
private String name;

public ExoticType(String nanme) {
thi s. nane = nane;
}

Spring Framework (2.0) 98

Validation, Data-binding, the Beanw apper , and

}
public class DependsOnExoticType {
private ExoticType type;
public void set Type(ExoticType type) {

this.type = type;
}

When things are properly set up, we want to be able to assign the type property as a string, which a
Propert yEdi t or Will behind the scenes convert into areal Exot i cType oObject:

<bean i d="sanpl e" cl ass="exanpl e. DependsOnExot i cType" >
<property name="type" val ue="aNanmeFor Exoti cType"/>
</ bean>

The Propert yEdi t or implementation could ook similar to this:

/] converts string representation to ExoticType Obj ect
package exanpl e;

public class ExoticTypeEditor extends PropertyEditorSupport {
private String format;

public void setFormat(String format) {
this.format = format;

}
public void setAsText(String text) {
if (format != null && format.equal s("upperCase")) {
text = text.toUpperCase();
}
Exoti cType type = new ExoticType(text);
set Val ue(type);
}

Finally, we use Cust onEdi t or Conf i gur er to register the new Propert yEdi t or With the Appl i cati onCont ext ,
which will then be able to use it as needed:

<bean i d="cust onEdi t or Confi gurer"
cl ass="org. spri ngframewor k. beans. fact ory. confi g. Cust onEdi t or Confi gurer">
<property nanme="cust onEditors">
<map>
<entry key="exanpl e. Exoti cType">
<bean cl ass="exanpl e. Exoti cTypeEdi t or">
<property name="format" val ue="upper Case"/>
</ bean>
</entry>
</ map>
</ property>
</ bean>

Spring Framework (2.0) 99

Chapter 6. Aspect Oriented Programming with
Spring

6.1. Introduction

Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by providing
another way of thinking about program structure. In addition to classes, AOP gives you aspects. Aspects enable
modularization of concerns such as transaction management that cut across multiple types and objects. (Such
concerns are often termed crosscutting concerns.)

One of the key components of Spring is the AOP framework. While the Spring 10C container does not depend
on AOP, meaning you don't need to use AOP if you don't want to, AOP complements Spring 1oC to provide a
very capable middleware solution.

Spring 2.0 AOP

Spring 2.0 introduces a simpler and more powerful way of writing custom aspects using either a
schemarbased approach or the @A spectJ annotation style. Both of these styles offer fully typed advice
and use of the AspectJ pointcut language, while still using Spring AOP for weaving.

The Spring 2.0 schema and @AspectJ based AOP support is discussed in this chapter. See section
"choosing which AOP declaration style to use" for advice on choosing the appropriate style for your
application. Spring 2.0 remains fully backwards compatible with Spring 1.2 and the lower-level AOP
support offered by the Spring 1.2 APIsis discussed in the next chapter.

AOP isused in Spring:

« To provide declarative enterprise services, especially as areplacement for EJB declarative services. The most
important such service is declarative transaction management, which builds on Spring's transaction
abstraction.

e To alow usersto implement custom aspects, complementing their use of OOP with AOP.

Thus you can view Spring AOP as either an enabling technology that allows Spring to provide declarative
transaction management without EJB; or use the full power of the Spring AOP framework to implement custom

aspects.

This chapter first introduces AOP concepts, which you will want to read whichever style of aspect declaration
you choose to use. The remainder of the chapter focuses on the Spring 2.0 AOP support; see the following
chapter for an overview of the Spring 1.2 style AOP, which you may well encounter in books, articles, and
existing applications.

If you are interested only in generic declarative services or other pre-packaged declarative middleware
services such as pooling, you don't need to work directly with Soring AOP, and can skip most of this chapter.

6.1.1. AOP concepts

Let us begin by defining some central AOP concepts. These terms are not Spring-specific. Unfortunately, AOP
terminology is not particularly intuitive; however, it would be even more confusing if Spring used its own

Spring Framework (2.0) 100

Aspect Oriented Programming with Spring

terminology.

» Aspect: A modularization of a concern that cuts across multiple objects. Transaction management is a good
example of a crosscutting concern in J2EE applications. In Spring AOP, aspects are implemented using
regular classes (the schema-based approach) or regular classes annotated with the @spect annotation
(@spect J style).

e Join point: A point during the execution of a program, such as the execution of a method or the handling of
an exception. In Spring AOP, a join point always represents a method execution. Join point information is
available in advice bodies by declaring a parameter of type or g. aspectj . | ang. Joi nPoi nt .

» Advice: Action taken by an aspect at a particular join point. Different types of advice include "around,"
"before” and "after" advice. Advice types are discussed below. Many AOP frameworks, including Spring,
model an advice as an interceptor, maintaining a chain of interceptors "around"” the join point.

e Pointcut: A predicate that matches join points. Advice is associated with a pointcut expression and runs at
any join point matched by the pointcut (for example, the execution of a method with a certain name). The
concept of join points as matched by pointcut expressions is central to AOP: Spring uses the AspectJ
pointcut language by default.

* Introduction: (Also known as an inter-type declaration). Declaring additional methods or fields on behalf of a
type. Spring allows you to introduce new interfaces (and a corresponding implementation) to any proxied
object. For example, you could use an introduction to make a bean implement an | svodi i ed interface, to
simplify caching.

« Target object: Object being advised by one or more aspects. Also referred to as the advised object. Since
Spring AOP isimplemented using runtime proxies, this object will always be a proxied object.

« AOP proxy: Object created by the AOP framework in order to implement the aspect contracts (advise method
executions and so on). In Spring, an AOP proxy will be a JDK dynamic proxy or a CGLIB proxy. Note:
proxy creation is transparent to users of the schema-based and @AspectJ styles of aspect declaration
introduced in Spring 2.0

» Weaving: Linking aspects with other application types or objects to create an advised object. This can be
done at compile time (using the AspectJ compiler, for example), load time, or at runtime. Spring, like other
pure Java AOP frameworks, performs weaving at runtime.

Types of advice:

« Before advice: Advice that executes before a join point, but which does not have the ability to prevent
execution flow proceeding to the join point (unlessit throws an exception).

 After returning advice: Advice to be executed after ajoin point completes normally: for example, if amethod
returns without throwing an exception.

« After throwing advice: Advice to be executed if amethod exits by throwing an exception.

« After (finally) advice: Advice to be executed regardless of the means by which ajoin point exits (normal or
exceptional return).

* Around advice: Advice that surrounds a join point such as a method invocation. This is the most powerful
kind of advice. Around advice can perform custom behavior before and after the method invocation. It isaso
responsible for choosing whether to proceed to the join point or to shortcut executing by returning its own
return value or throwing an exception.

Spring Framework (2.0) 101

Aspect Oriented Programming with Spring

Around advice is the most general kind of advice. Most interception-based AOP frameworks, such as Nanning
Aspects, provide only around advice.

As Spring, like AspectJ, provides a full range of advice types, we recommend that you use the least powerful
advice type that can implement the required behavior. For example, if you need only to update a cache with the
return value of a method, you are better off implementing an after returning advice than an around advice,
although an around advice can accomplish the same thing. Using the most specific advice type provides a
simpler programming model with less potential for errors. For example, you dont need to invoke the
proceed() method on the Joi nPoi nt used for around advice, and hence can't fail to invoke it.

In Spring 2.0, al advice parameters are statically typed, so that you work with advice parameters of the
appropriate type (the type of the return value from a method execution for example) rather than Object arrays.

The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from older
technologies offering only interception. Pointcuts enable advice to be targeted independently of the OO
hierarchy. For example, an around advice providing declarative transaction management can be applied to a set
of methods spanning multiple objects (such as all business operationsin the service layer).

6.1.2. Spring AOP capabilities and goals

Spring AOP is implemented in pure Java. There is no need for a special compilation process. Spring AOP does
not need to control the class loader hierarchy, and is thus suitable for use in a J2EE web container or
application server.

Spring currently supports only method execution join points (advising the execution of methods on Spring
beans). Field interception is not implemented, although support for field interception could be added without
breaking the core Spring AOP APIs. If you need to advise field access and update join points, consider a
language such as AspectJ.

Spring's approach to AOP differs from that of most other AOP frameworks. The aim is not to provide the most
complete AOP implementation (although Spring AOP is quite capable); it is rather to provide a close
integration between AOP implementation and Spring 10C to help solve common problems in enterprise
applications.

Thus, for example, Spring's AOP functionality is normally used in conjunction with a Spring 10C container.
Aspects are configured using normal bean definition syntax (although this alows powerful "autoproxying"
capabilities): a crucial difference from other AOP implementations. There are some things you can't do easily
or efficiently with Spring AOP, such as advise very fine-grained objects. Aspect] is the best choice in such
cases. However, our experience is that Spring AOP provides an excellent solution to most problems in J2EE
applications that are amenable to AOP.

Spring AOP will never strive to compete with AspectJ to provide a comprehensive AOP solution. We believe
that both proxy-based frameworks like Spring and full-blown frameworks such as AspectJ are valuable, and
that they are complementary, rather than in competition. Spring 2.0 seamlessly integrates Spring AOP and 10C
with AspectJ, to enable all uses of AOP to be catered for within a consistent Spring-based application
architecture. This integration does not affect the Spring AOP API or the AOP Alliance API; Spring AOP
remains backward-compatible. See the following chapter for adiscussion of the Spring AOP APIs.

6.1.3. AOP Proxies in Spring

Spring defaults to using J2SE dynamic proxies for AOP proxies. This enables any interface or set of interfaces
to be proxied.

Spring Framework (2.0) 102

Aspect Oriented Programming with Spring

Spring can also use CGLIB proxies. This is necessary to proxy classes, rather than interfaces. CGLIB is used
by default if a business object doesn't implement an interface. As it's good practice to program to interfaces
rather than classes, business objects normally will implement one or more business interfaces. It is possible to
force the use of CGLIB [128], in those (hopefully rare) cases where you need to advise a method that is not
declared on an interface, or where you need to pass a proxied object to a method as a concrete type.

Beyond Spring 2.0, Spring may offer additional types of AOP proxy, including wholly generated classes. This
won't affect the programming model.

6.2. @Aspectd support

"@Aspect]' refers to a style of declaring aspects as regular Java classes annotated with Java 5 annotations. The
@A spectd style was introduced by the AspectJ project as part of the AspectJ 5 release. Spring 2.0 interprets the
same annotations as Aspect 5, using a library supplied by Aspect] for pointcut parsing and matching. The
AOP runtimeis still pure Spring AOP though, and there is no dependency on the AspectJ compiler or weaver.

Using the Aspectd compiler and weaver enables use of the full Aspect) language, and is discussed in
Section 6.8, “ Using Aspect] with Spring applications” .

6.2.1. Enabling @AspectJ Support

To use @A spectJ aspects in a Spring configuration you need to enable Spring support for configuring Spring
AOP based on @AspectJ aspects, and autoproxying beans based on whether or not they are advised by those
aspects. By autoproxying we mean that if Spring determines that a bean is advised by one or more aspects, it
will automatically generate a proxy for that bean to intercept method invocations and ensure that advice is
executed as needed.

The @A spectJ support is enabled by including the following element inside your spring configuration:

<aop: aspect j - aut opr oxy/ >
This assumes that you are using schema support as described in Appendix A, XML Schema-based
configuration. See Section A.2.6, “ The aop schema’ for how to import the tags in the aop namespace.

If you are using the DTD, it is still possible to enable @AspectJ support by adding the following definition to
your application context:

<bean cl ass="org. spri ngfranmewor k. aop. aspectj . annot ati on. Annot at i onAwar eAspect JAut oPr oxyCreator" />

You will aso need two Aspectd libraries on the classpath of your application: aspectjweaver.jar and
aspectjrt.jar. These libraries are available in the 1i b directory of an Aspect] installation (version 1.5.1 or
later required), or inthel i b/ aspectj directory of the Spring-with-dependencies distribution.

6.2.2. Declaring an aspect

With the @AspectJ support enabled, any bean defined in your application context with a class that is an
@A spect] aspect (has the @spect annotation) will be automatically detected by Spring and used to configure
Spring AOP. The following example shows the minimal definition required for a not-very-useful aspect:

A regular bean definition in the application context, pointing to a bean class that has the @spect annotation:

Spring Framework (2.0) 103

http://www.eclipse.org/aspectj

Aspect Oriented Programming with Spring

<bean id="nyAspect" cl ass="org. xyz. Not Ver yUsef ul Aspect ">
<I-- configure properties of aspect here as nornal -->
</ bean>

And the Not VeryUseful Aspect class definition, annotated with org. aspectj .| ang. annot ati on. Aspect
annotation;

package org. xyz;
i nport org.aspectj .| ang. annot ati on. Aspect ;

@\spect
public class Not VeryUseful Aspect {

}

Aspects (classes annotated with @spect) may have methods and fields just like any other class. They may also
contain pointcut, advice, and introduction (inter-type) declarations.

6.2.3. Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control when advice executes.
Sporing AOP only supports method execution join points for Spring beans, so you can think of a pointcut as
matching the execution of methods on Spring beans. A pointcut declaration has two parts. a signature
comprising a name and any parameters, and an attendant pointcut expression that actually determines exactly
which method executions we are interested in. In the @A spectJ annotation-style of AOP, a pointcut signatureis
provided by a regular method definition, and the pointcut expression is indicated using the @oi nt cut
annotation (the method serving as the pointcut signature must have avoi d return type).

An example will help make this distinction between a pointcut signature and a pointcut expression clear. The
following example defines a pointcut named ' anyd dTransfer' that will match the execution of any method
named' transfer':

@oi ntcut ("execution(* transfer(..))")// the pointcut expression
private void anyd dTransfer() {}// the pointcut signature

The pointcut expression that forms the value of the @oi nt cut annotation is a regular Aspect] 5 pointcut
expression. For a full discussion of AspectJ's pointcut language, see the Aspectd Programming Guide (and for
Java 5 based extensions, the Aspectd 5 Developers Notebook) or one of the books on Aspect] such as "Eclipse
AspectJ' by Colyer et. al. or "AspectJin Action" by Ramnivas Laddad.

6.2.3.1. Supported Pointcut Designators

Spring AOP supports the following A spectJ pointcut designators for use in pointcut expressions:

Other pointcut types

The full Aspectd pointcut language supports additional pointcut designators that are not supported in
Spring. These are: cal |, initialization, preinitialization, staticinitialization, get, set,
handl er, advi ceexecution, W thincode, cflow, cflowbelow, if, @his,and@ithi ncode. Use of
these pointcut designators in pointcut expressions interpreted by Spring AOP will result in an
I'I'| egal Argunent Except i on being thrown.

The set of pointcut designators supported by Spring AOP may be extended in future releases both to
support more of the AspectJ pointcut designators (e.g. "if"), and potentially to support Spring specific

Spring Framework (2.0) 104

http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html

Aspect Oriented Programming with Spring

designators such as "bean" (matching on bean name).

* execution - for matching method execution join points, this is the primary pointcut designator you will use
when working with Spring AOP

 within - limits matching to join points within certain types (simply the execution of a method declared within
amatching type when using Spring AOP)

* this - limits matching to join points (the execution of methods when using Spring AOP) where the bean
reference (Spring AOP proxy) is an instance of the given type

* target - limits matching to join points (the execution of methods when using Spring AOP) where the target
object (application object being proxied) is an instance of the given type

* args - limits matching to join points (the execution of methods when using Spring AOP) where the
arguments are instances of the given types

* @arget - limits matching to join points (the execution of methods when using Spring AOP) where the class
of the executing object has an annotation of the given type

* @urgs - limits matching to join points (the execution of methods when using Spring AOP) where the runtime
type of the actual arguments passed have annotations of the given type(s)

* @ithin - limits matching to join points within types that have the given annotation (the execution of
methods declared in types with the given annotation when using Spring AOP)

* @annotation - limits matching to join points where the subject of the join point (method being executed in
Spring AOP) has the given annotation

Because Spring AOP limits matching to only method execution join points, the discussion of the pointcut

designators above gives a narrower definition than you will find in the Aspect] programming guide. In

addition, AspectJ itself has type-based semantics and at an execution join point both 'this and ‘target’ refer to

the same object - the object executing the method. Spring AOP is a proxy based system and differentiates

between the proxy object itself (bound to 'this) and the target object behind the proxy (bound to 'target’).

6.2.3.2. Combining pointcut expressions

Pointcut expressions can be combined using ‘& &', '||' and " It is also possible to refer to pointcut expressions
by name. The following example shows three pointcut expressions: anyPubl i cQper at i on (which matches if a
method execution join point represents the execution of any public method); i nTr adi ng (which matches if a
method execution is in the trading module), and t r adi ngQper ati on (which matches if a method execution
represents any public method in the trading module).

@poi nt cut ("execution(public * *(.

)M
private void anyPublicQOperation() {}

@Poi ntcut ("wi thin(com xyz. soneapp. trading..*")
private void inTrading() {}

@oi nt cut ("anyPubl i cOperation() && inTrading()")
private void tradi ngQperation() {}

It is a best practice to build more complex pointcut expressions out of smaller named components as shown
above. When referring to pointcuts by name, normal Java visibility rules apply (you can see private pointcutsin
the same type, protected pointcuts in the hierarchy, public pointcuts anywhere and so on). Visibility does not

Spring Framework (2.0) 105

Aspect Oriented Programming with Spring

affect pointcut matching.

6.2.3.3. Sharing common pointcut definitions

When working with enterprise applications, you often want to refer to modules of the application and particular
sets of operations from within several aspects. We recommend defining a "SystemArchitecture” aspect that
captures common pointcut expressions for this purpose. A typical such aspect would look as follows:

package com xyz. soneapp

i nport org.aspectj .| ang. annot ati on. Aspect;
i nport org. aspectj .| ang. annot at i on. Poi nt cut ;

@\spect
public class SystemArchitecture {

/**

* Ajoin point is in the web layer if the method is defined

* in a type in the com xyz. sonmeapp. web package or any sub- package
* under that.

*/

@Poi ntcut ("within(com xyz. someapp. web. . *)")

public void i nWebLayer () {}

/**
* Ajoin point is in the service layer if the method is defined
* in a type in the com xyz. sonmeapp. servi ce package or any sub- package
* under that.
*/
@Poi ntcut ("wi thin(com xyz. sonmeapp. service..*)")
public void inServiceLayer() {}

/**
* Ajoin point is in the data access layer if the nethod is defined
* in a type in the comxyz. soneapp. dao package or any sub-package
* under that.
*/
@poi nt cut ("wi t hi n(com xyz. soneapp. dao. . *)")
public void inDataAccessLayer() {}

*

/
A business service is the execution of any nethod defined on a service
interface. This definition assunes that interfaces are placed in the
"service" package, and that inplenentation types are in sub-packages.

If you group service interfaces by functional area (for exanple,

i n packages com xyz. soneapp. abc. servi ce and com xyz. def. service) then
the poi ntcut expression "execution(* com xyz.soneapp..service.*.*(..))"
coul d be used instead.

L I A

*

*/
@Poi nt cut ("execution(* com xyz.sonmeapp.service.*.*(..))")
public void businessService() {}

/~k~k

* A data access operation is the execution of any nethod defined on a

* dao interface. This definition assumes that interfaces are placed in the
* "dao" package, and that inplenentation types are in sub-packages

*/

@Poi nt cut ("execution(* com xyz.sonmeapp.dao.*.*(..))")

public void dataAccessOperation() {}

The pointcuts defined in such an aspect can be referred to anywhere that you need a pointcut expression. For
example, to make the service layer transactional, you could write:

<aop: confi g>
<aop: advi sor
poi nt cut =" com xyz. sonmeapp. Syst emAr chi t ect ur e. busi nessService()"
advi ce-ref ="t x-advi ce"/>
</ aop: confi g>

Spring Framework (2.0) 106

Aspect Oriented Programming with Spring

<t x: advi ce id="tx-advi ce">
<tx:attributes>
<t x: met hod name="*" propagati on="REQU RED"/ >
</tx:attributes>
</t x: advi ce>

The <aop: confi g> and <aop: advi sor > tags are discussed in the section entitled Section 6.3, “ Schema-based
AOP support”. The transaction tags are discussed in the chapter entitled Chapter 9, Transaction management.

6.2.3.4. Examples

Spring AOP users are likely to use the execution pointcut designator the most often. The format of an
execution expression is:

execution(nodifiers-pattern? ret-type-pattern declaring-type-pattern? nanme-pattern(param pattern)
t hrows- pattern?)

All parts except the returning type pattern (ret-type-pattern in the snippet above), name pattern, and parameters
pattern are optional. The returning type pattern determines what the return type of the method must be in order
for ajoin point to be matched. Most frequently you will use * as the returning type pattern, which matches any
return type. A fully-qualified type name will match only when the method returns the given type. The name
pattern matches the method name. Y ou can use the * wildcard as all or part of a name pattern. The parameters
pattern is dightly more complex: () matches a method that takes no parameters, whereas (. .) matches any
number of parameters (zero or more). The pattern (*) matches a method taking one parameter of any type,
(*, String) matches amethod taking two parameters, the first can be of any type, the second must be a String.
Consult the Language Semantics section of the Aspectd Programming Guide for more information.

Some examples of common pointcut expressions are given below.

« the execution of any public method:

execution(public * *(..))

« the execution of any method with a name beginning with "set":

execution(* set*(..))

« the execution of any method defined by the Account Ser vi ce interface:

execution(* com xyz. servi ce. Account Service. *(..))

* the execution of any method defined in the service package:

execution(* com xyz.service.*. *(..))

« the execution of any method defined in the service package or a sub-package:

execution(* com xyz.service..*.*(..))

 any join point (method execution only in Spring AOP) within the service package:

Wi t hi n(com xyz. service. *)

Spring Framework (2.0) 107

http://www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html

Aspect Oriented Programming with Spring

any join point (method execution only in Spring AOP) within the service package or a sub-package:

wi t hi n(com xyz. service. .*)

any join point (method execution only in Spring AOP) where the proxy implements the Account Servi ce
interface:

thi s(com xyz. servi ce. Account Servi ce)

'this' is more commonly used in a binding form :- see the following section on advice for how to make the
proxy object available in the advice body.

e any join point (method execution only in Spring AOP) where the target object implements the
Account Servi ce interface:

target (com xyz. servi ce. Account Ser vi ce)

‘target' is more commonly used in a binding form :- see the following section on advice for how to make the
target object available in the advice body.

e any join point (method execution only in Spring AOP) which takes a single parameter, and where the
argument passed at runtimeisSeri al i zabl e:

args(java.io. Serializable)

‘args is more commonly used in a binding form :- see the following section on advice for how to make the
method arguments available in the advice body.

Note that the pointcut given in this example is different to execution(* *(java.io. Serializable)): the
args version matches if the argument passed at runtime is Serializable, the execution version matches if the

method signature declares a single parameter of type Seri al i zabl e.

e any join point (method execution only in Spring AOP) where the target object has an @r ansacti onal
annotation:

@ ar get (org. springfranework. transaction. annot ati on. Transacti onal)

'‘@target’ can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) where the declared type of the target object has an
@' ansact i onal annotation:

@i t hi n(org. springfranework. transaction. annot ati on. Transacti onal)

‘@within' can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) where the executing method has an @r ansact i onal
annotation:

@nnot ati on(org. springfranework. transaction. annot ati on. Transacti onal)

‘@annotation’ can also be used in a binding form ;- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) which takes a single parameter, and where the

Spring Framework (2.0) 108

Aspect Oriented Programming with Spring

runtime type of the argument passed hasthe @ assi f i ed annotation:

@rgs(com xyz. security. d assified)

'@args can also be used in a binding form :- see the following section on advice for how to make the
annotation object(s) available in the advice body.

6.2.4. Declaring advice

Advice is associated with a pointcut expression, and runs before, after, or around method executions matched
by the pointcut. The pointcut expression may be either a simple reference to a named pointcut, or a pointcut
expression declared in place.

6.2.4.1. Before advice

Before adviceis declared in an aspect using the @ef or e annotation:

i nport org.aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotati on. Bef ore;

@\spect
public cl ass BeforeExanpl e {

@Bef ore("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doAccessCheck() {
/1

}

If using an in-place pointcut expression we could rewrite the above example as:

i mport org.aspectj .| ang.annotation. Aspect;
i nport org. aspectj .| ang. annot ati on. Bef or e;

@\spect
public class BeforeExanple {

@Bef ore("execution(* com xyz. nyapp.dao.*.*(..))")
public void doAccessCheck() {
/1

}

6.2.4.2. After returning advice

After returning advice runs when a matched method execution returns normally. It is declared using the
@\f t er Ret ur ni ng annotation:

i nport org.aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotation. AfterReturning;

@\spect
public class AfterReturningExanple {

@Af t er Ret ur ni ng("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doAccessCheck() {
/1

}

Spring Framework (2.0) 109

Aspect Oriented Programming with Spring

Note: it is of course possible to have multiple advice declarations, and other members as well, all inside the
same aspect. We're just showing a single advice declaration in these examples to focus on the issue under
discussion at the time.

Sometimes you need access in the advice body to the actual value that was returned. You can use the form of
@\f t er Ret ur ni ng that binds the return value for this:

i mport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.|ang.annotation. AfterReturning;

@\spect
public class AfterReturningExanple {

@Af t er Ret ur ni ng(
poi nt cut =" com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessQperation()",
returning="retVal")

public void doAccessCheck(Object retVal) {
...

}

The name used in the r et ur ni ng attribute must correspond to the name of a parameter in the advice method.
When a method execution returns, the return value will be passed to the advice method as the corresponding
argument value. A r et ur ni ng clause also restricts matching to only those method executions that return avalue
of the specified type (bj ect in this case, which will match any return value).

6.2.4.3. After throw